Archive for flight crew

Flight Crew Reality: Travel Privileges are a Cruel Hoax

Posted in air travel, air traveler, airline, airline cartoon, airline industry, airline pilot, airline pilot blog with tags , , , , , , , , , , , , on November 9, 2015 by Chris Manno

BA 747

Flight Crew Reality: Travel Privileges are a Cruel Hoax

There–I said it: travel privileges are a cruel hoax. If anyone is choosing an airline career based on the expectation of free air travel, you might as well start looking for a different job. Because the reality of crew life is this: airplanes are booked so full nowadays that non-rev travel is a frustrating, time-wasting ordeal that sucks the life out of days off.

It gets worse, too. In the past decade, every major airline has gone through dire financial restructuring. For flight crews, the end result is more work days per month, longer days per trip, with less off-duty rest between flights.

Bankruptcy at most major carriers resulted in the gutting of flight crew contracts, creating grueling work rules for diminished pay rates. So, we all fly more days per month at lower pay rates than ever before just to keep up.


Most crewmembers who have been flying at least ten years accept this diminished reality, the longer days, lower pay and fewer days off. It’s the unfortunate evolution of the airline biz as it plays out in 2015 and sad as it is to see, we realize the “good old days” of easy non-rev travel, more days off, and longer rest breaks are a thing of the past.

Yes, you can still squeeze on for a few quick trips. But if you have an event to attend, a cruise or a resort prepaid, or several  people traveling with you, you’ll have to buy a ticket.

Many actually see an upside to full jets in terms of financial security for the airline issuing our pay checks. When customers drop off, and flight become less crowded, the trickle-down effect for airline employees is furloughs and pay cuts.

Heavy loads and the reduced ability to fly non-rev impacts crewmembers who commute the most, because if a flight is required for them to get from their home to their crew base, the small number of available unsold seats require them to spend even more time away from home.

There are two types of commuters–voluntary and involuntary. I feel sorry for the latter: they’re the very junior who have been displaced out of their home base due to manning cutbacks. For many, a family situation dictates that they must commute. This is a harsh, disheartening burden for them to bear, one that’s completely out of their control.


The other type is the voluntary commuters. That is, though they may live within driving distance of a crew base, some voluntarily transfer to a base requiring a flight to get to work. They’re motivated by some perceived advantage, whether financial or other personal priority. Fine, and good luck: if I chose to commute to a more junior base like NYC or Miami, I could hold the 777 captain schedule of my choice. But I don’t, because I know the drawbacks, the wasted time, the reduced family time as a parent and spouse if I did.

Add about three times the stress, waiting and lost time with family that goes with the unprecedented high flight bookings that show no sign of relenting and the voluntary commute is less attractive than ever. Some still choose to do so, and more power to them.

Regardless, the “good old days” of easy nonrev travel and lots of free days off to pursue it are long gone. For the majority of the flight crew world, home and family responsibilities become the priority rather than leisure travel anyway after ten or fifteen years of flying. For the twenty-somethings new to the job and hoping to fly free, the full jets that make nonrev travel next to impossible are a measure of financial security they desperately need, because they’re the ones most vulnerable to furloughs if air travel demand drops off. Many would prefer the side effect of profitability–full seats–to the hazards of an airline downturn.


Some crewmembers actually portray full aircraft and a nearly impossible pass travel situation as a plot against employees, but anyone who has been here more than ten years recalls two things that override such nonsense. First, we all remember the pay cuts, lost retirements and career stagnation of “the good old days” when air traffic was light And non-rev travel easy. And second, perhaps most important, we realize that the good old days of great layovers, long crew rest and days off are a thing of the past, permanently.

There are those who must commute and I feel sorry for them. There are those who choose to commute and I feel sorry for them, too. And there are those–including me–who wish pass travel was easier.

But those of us in the aircrew biz realize the reality of life today. If you’re tempted to take a flight crew job for the “free travel,” you’re going to be disappointed. And if you’re flying today but looking backwards to the good old days, complaining about the loss–get real: the good old days, like your nostalgic, time-aggrandized young aircrew days are gone for good. Like it or not, we’re moving on.




Air Asia Crash Raises Questions For Pilots.

Posted in air travel, airline pilot blog, airliner, airlines, flight crew, pilot, Uncategorized with tags , , , , , , , , , , , , , , on January 9, 2015 by Chris Manno

The search continues for the Digital Flight Data Recorder (DFDR) and Cockpit Voice Recorder (CVR) from the lost Air Asia flight 8501 and as that process drags on, speculation about the cause of the crash abounds.

Multiple news media sources advance abstract theories based more on the wide-open field of “what could happen” rather than what’s likely, serving only to blur the line between fact and fiction.

I won’t speculate on what happened to QZ 8501 because until the DFDR and CVR are recovered, transcribed and the recovered data analyzed, any theory advanced is just more noise in the media clamor aimed mostly at ratings rather than facts.

But, I can speak to what concerns me as the pilot of a modern, 160 seat airliner flying often in the same circumstances encountered by the lost flight. My goal in learning what the flight’s recorders report is simple: I want to know how to avoid a similar outcome.

With that in mind, here are my concerns. First, the slim margin between high speed and low speed limits at high altitude and the liabilities of each. Second, the problems presented by convective activity in crowded airspace. Finally, recovery from any inflight upset at altitude that may be encountered as a result of any or all of the above factors.

Early in any flight, the aircraft’s weight is the highest, limiting the ability of the aircraft to climb into the thinner air at higher altitude. As the flight progresses and fuel is consumed, the aircraft grows lighter and climb capability increases. Generally speaking, later in flight there are more habitable altitudes available due to weight constraints easing.


But don’t think that climbing is the only option for weather avoidance. Often enough, a descent is needed to avoid the top part of a storm, the anvil-shaped blow-off containing ice, high winds and turbulence. Equally as often, lower altitudes may turn out to have a smoother ride.

The other major climb restriction along frequently used jet routes is converging traffic. Aircraft flying opposing directions must be separated by a thousand feet vertically, so if I  want to climb to avoid weather, I have to nonetheless stay clear of oncoming traffic. The New York Post reported the incorrect statement that the air traffic controllers handling the Air Asia flight “made the fatal mistake” of denying the Air Asia’s pilot request for a higher altitude. The first job of air traffic control is to separate traffic, particularly converging nose to nose. Climbing through conflicted airspace–or granting clearance to do so–would more likely be a fatal mistake.

sunset 1

But there’s even more to the story: air traffic controllers respond to such requests in a more fluid fashion than the static “no” being implied by many media reports. In actual practice, for a climb or descent request, the denial would be more typically, “Unable climb, you have traffic on your nose,” or, “It’ll be 5 to 7 minutes before we can clear you higher,” or, “We can vector you off course so you can clear the airway and traffic and then climb,” or, “Unable in this sector, check with the next controller.” Regardless, there are other options to avoid weather.

If changing altitude is not an immediate option, lateral deviation is the next choice. But the same obstacles–weather and traffic–may limit that option as well.

So now, if vertical and lateral deviation isn’t immediately available, you must do your best to pick your way through the weather with radar, if possible, until one of those options comes available (again, at ATC denial isn’t final or permanent) or you’re clear of the weather.

Which brings us back to the margin between high and low speed limit. This is even more critical in convective weather, because turbulence can instantaneously bump your airspeed past either limit if there’s not enough leeway to either side of your cruise Mach.

The picture below shows a normal airspeed spread in cruise. Notice the speed tape on the left with the red and white stripe above and the yellow line below the airspeed number box. The hash marks represent 10 knots of airspeed. The red and black marker above the speed readout is called the chain, and it depicts the maximum speed limit for weight and altitude. The yellow line below the numbers is called the hook, and it marks the minimum speed required to keep flying.

adi 2

Turbulence, or more accurately, high altitude windshear, can bump you past either limit, or both, if there’s less than say, ten knots of slack, because moderate turbulence can cause swings closer to twenty knots; severe turbulence even more. Essentially, turbulence can instantly bump an aircraft out of its flight envelope.

In that case, the aircraft can depart controlled flight in a couple of different ways. The one that concerns me most is on the high end: if turbulence or any other factor pitched the nose down and the airspeed then climbed above the chain, the worst case is a phenomenon rarely discussed outside of the jet pilot community called “Mach tuck” that affects swept wing aircraft. Essentially, if you don’t immediately apply the proper corrective input, in a matter of seconds, recovery is beyond all means from the cockpit.

On the low speed side, if the wing stalls due to an airspeed below the hook, recovery is possible once the airspeed is regained. That takes altitude to regain, but normally can be done if a stall occurs at cruise altitude. But even that requires recognition and then the proper corrective control inputs, and Air France Flight 477 with three pilots in the cockpit entered a stall at cruise altitude but never identified the problem or applied the proper recovery inputs, resulting in a crash into the Atlantic that killed all aboard.

Bottom line: you need a wider spread between high and low speed limits in case of turbulence. If you can’t avoid turbulence and need to change altitude, you must assure a wide airspeed margin between limits to avoid being pushed by turbulence beyond either speed constraint. Here’s what the airspeed range looks like at high altitude:

adi 1

There’s very little tolerance for turbulence and any associated airspeed fluctuation.

In the worst case scenario, if the aircraft is pushed beyond its flight envelope to the extent that controlled flight is departed, a pilot must quickly and accurately recognize which situation is at hand, high or low speed buffet, then immediately apply the correct control input.

Problem is, they may initially look the same, and the correct remedy for one applied to the other severely worsens the situation. Specifically, if the aircraft begins a descent at a speed beyond the chain, the corrective action would be to deploy speed brakes, pull throttles to idle, apply back pressure to raise the nose, and I’d be ready to even lower the gear to add drag, even knowing that would likely result in gear doors being ripped off the aircraft.

If this recovery is not done early in the pitchdown, the result will be a dive with no chance of recovery.

If a low speed stall is encountered, the proper corrective action would be to add power and lower the nose until flying speed was recovered. But, if the high speed departure–also a pitch down and descent–was mistakenly interpreted to be a slow speed stall, applying the slow speed recovery to a high speed departure would be fatal.

The other way? If you mistakenly added drag and pulled back power in a slow speed stall? That would prolong the stall, but if the correct control input was eventually applied, the aircraft could recover, altitude permitting.


Adding the factors that make this vital task of discrimination difficult would be any associated systems failure and the physical effects of turbulence that can make instruments nearly impossible to read.

In any pitch down, if rapid and deep enough, can cause electrical failure due to generators failing at negative G-loads associated with the pitch down. Yes, back up controls and instruments exist, but recognizing the situation, taking corrective action and reading backup instruments also takes time and attention.

Pitot-static failure, one of the contributing causes in the Air France slow speed stall, can also be difficult to recognize in turbulence or in an electrical failure.

Regardless, the high speed situation must be correctly identified and recovery initiated in a matter of seconds. Both situations would be difficult to diagnose and both recoveries would be very challenging to perform in turbulence and with any other systems failure or complication. Both recoveries are time-sensitive and if not managed correctly, one recovery could induce the other stall. That is, too much drag and power reduction carried beyond the return from the high speed exceedence can induce a low speed stall, and too much nose down pitch and excess power from a slow speed recovery could push you through the high speed limit.

So here are my questions, which are those that will be asked by The QZ8501 accident investigation board. First what did the aircraft weigh and what was the speed margin at their cruise altitude and at the altitude they had requested? What type turbulence did they encounter and what speed and altitude excursions, if any, resulted? What collateral malfunctions, if any did they encounter? And finally, what departure from controlled flight, if any, occurred, and what remedial action, if any, was attempted?

These questions can only be answered by the DFDR and CVR and my interest–and that of every airline pilot–is mostly this: I want to know what exactly happened so as to be prepared in case I encounter the situation myself, and I want to know what they did in order to know what exactly I should or shouldn’t do.

Like pilots at all major US airlines, I get annual simulator training in exactly these scenarios, hands-on practice recovering from stalls and uncontrolled flight. Is that enough? Can we do that better?

Once the facts contained in the flight’s recorder are extracted and analyzed, we’ll have the answers to all of these questions, which will help us prevent a repeat of this disaster. Beyond that, speculation is just a sad, pointless part of unfortunate ratings-hungry media circus.


Flying a Jet in the Los Angeles Storms, December 12, 2014.

Posted in air travel, airline pilot blog, airliner, airlines, airport, flight crew, jet, passenger, pilot, travel with tags , , , , , , , , , , , , , , , , , on December 13, 2014 by Chris Manno


“That’s some catch, that Catch-22.” –Captain Yossarian, Catch-22

Here’s the deal, captain: you’re flying a 65 ton jet into Orange County airport, the famously short 5,700 foot runway. The stopping distance required there is increased drastically if that runway is wet–and yesterday, “wet” was an understatement: Los Angeles was drenched in a ten-year storm dumping inches of rain in a matter of hours.

And here’s the catch: you want to have the least amount of fuel–which is weight–on board for landing to permit stopping on the short, rain-slicked runway, but at the same time, as much as possible for a divert if necessary to Los Angeles International Airport or to Ontario Airport, both of which have long runways.

But it gets worse. The best bet for a diversion is Ontario, because the inbound air traffic is light compared to always busy LAX. But you’ve been watching on radar two thunderstorms sitting exactly on the top of Ontario, hardly moving. LAX is reporting heavy rain which means inbound delays and you know from experience that the inbound LAX air traffic flow includes many long-haul flights from Asia, Europe and points beyond. You don’t want to elbow into their already depleted fuel reserves.

Here’s your set of decisions: who will fly the approach at SNA? It must be done perfectly, given the conditions, which are reported as 1 1/2 mile visibility in fog and heavy rain, with 200 foot ceiling. The touchdown must be exactly on the right spot–neither too early nor too late–and exactly on speed, if we’re to stop on the remaining runway.

What is your plan: SNA, and then what? No holding fuel–on a missed approach, you can either try again, or divert to Ontario (thunderstorm overhead) or LAX.

You already know landing in a thunderstorm at Ontario is a poor choice. And you know, realistically, you don’t have the fuel to handle the air miles entry into the LAX landing sequence will require. A second try? Not even.

Okay, captain–DECIDE.

Here’s what I chose on each question. First, I had the F/O fly the approach. Why, when it had to be done exactly perfectly under bad conditions? The answer is, because he damn well knows how to fly an ILS, in any circumstances. If he flies the approach, fully investing in the stick-and-rudder attention demands which are large, I can focus on the big picture: what’s the Ontario storm doing? Watching LAX too on radar. Updating SNA winds, our fuel, our position.

Above ten thousand feet, we talk. I tell him what I’m thinking, then ask: what am I missing? Tell me your ideas? And as importantly, are you okay flying the approach? Because a bad night of sleep, a sore shoulder, anything–if you’re not up to this, I’ll do it.


And we have one shot, I tell him, then I’m putting clearance on request (actually did that as soon as we were switched to tower frequency) to Ontario. If the storm looks impassable on radar, option 3 is declare an emergency for fuel and barge into the LAX landing sequence. Don’t like that idea, but if we’re down to option 3, there is no other choice.

I also plot the magic number for SNA winds: 110 degrees and 290 degrees. For the precision landing runway, any wind beyond those two cardinal points strays into the verboten tailwind area. Asked about landing the other direction and the answer was: long delay. Not possible, for us.

Already requested and had the data linked chart for our landing weight sent up to the aircraft: we require 5,671 feet on a wet runway, good braking, zero tailwind. Each knot of tailwind adds 150 to the distance required, so even one knot of tailwind exceeds the runway length.

I switch my nav display from a compass arc to a rose: the full 360 display. I’m getting wind checks all the way down final and watching my cardinal points, alert for an excedence.

There’s a wind display on my HUD, too, but I realize that’s a calculation that is at least 15 seconds old. Eyeballs and experience tell the tale: he’s glued mostly to his instruments to fly a flawless ILS, but I’m mostly eyeballs-outside, monitoring speed, azimuth and glide path through the HUD, but paying attention to the realtime wind cues. He knows if I don’t like what I see, I’ll say, “Go-around” and we will be on to option 2 immediately. I know that if he doesn’t like the way the approach is going, he’ll announce and fly the go-around without any questions from me.

I tell him that if everything is stable on approach, let’s make a final wind analysis at 200 feet. If we’re both satisfied, silence means we’re both committed to landing.


I review in my head the rejected landing procedure. That is, if we touch down but I judge we can’t stop, throttle max, speed brakes stowed, flaps fifteen, forward trim, back into the air.

Clear your mind, focus on the plan: hate math, but I can sure see the compass depiction that means a verboten tailwind. Poor viz in heavy rain, but once I spot the VASIs, I can tell what the wind is doing to us. He’s flying a hell of a good approach. One final wind check at 200 feet. “That’s within limits,” I say, just to let him know that component is fine. He’s flying–if it doesn’t feel right, I want him to feel free to go-around immediately.

I don’t want to see high or low on either glide path or speed. No worries–he’s nailed it, both are stable.

A firm touchdown, then my feelers are up for hydroplaning: none. Speedbrakes deploy, but we’re not committed until reverse thrust. The MAX brakes grab hold, good traction; we’re fine, reverse thrust, I take over at 100 knots.

Silence in the cockpit. “Excellent job,” I say as we clear the runway, glad we didn’t have to execute either backup plan. Relief, Boeing has built us a damn fine, stable jet for this weather, this day, this runway.

Now, put that all behind–we still have to fly out of here in less than an hour. And do it all again tomorrow.


Air Travel Illustrated: The Holiday Flights.

Posted in air travel, airline, airline cartoon, airline cartoon book, airline delays, airline industry, airline passenger, airline pilot, airline pilot blog, airliner, airlines, airport, airport security, cartoon, fear of flying, flight attendant, flight crew, flight delays, jet, passenger, pilot, travel with tags , , , , , , , , , , , , on November 26, 2014 by Chris Manno

Some times words won’t do, or maybe illustrations can do better. Regardless, if you’re flying somewhere for the holiday, this is your life enroute. If you’re home already, here’s what you’re missing.

First, my best advice either way:

holiday 20001

With that in mind, make sensible reservations based upon experience, rather than an idealized hope:

seats apart0001

Flights are packed, so plan your inflight strategy:

safe word0001

Getting a last minute seat can be nearly impossible due to holiday load factors, unless you’re willing to compromise:


Keep in mind that you’ll have to handle your own baggage:


Prepare mentally for the challenges of airport security:

privacy tsa0001


Please board only when your sedative is called:

board prozac 10001

Ignore the pompous guys impressing each other in First Class:

class warfare

Or maybe share your admiration for them as you pass by:



Realize that children are on-board, so you’ll need to deal with them:

biz traveller0001

And parents, remember it’s your responsibility to discipline your kids on board:


Pay attention to the flight attendants when they speak to you:

tray table0001

And they may be talking to you even indirectly:


So pay attention:

connecting gate info

And when I turn on the seatbelt sign, it does mean you:


Realize that weather can complicate our flight:

scat vomit

So be prepared.

barf bag

Anticipate the post-holiday letdown:

leftover resentment0001

Enjoy your leftovers properly:

reheat turkey0001

And congratulate yourself for traveling and thereby avoiding a worse fate. Bon voyage!

fly 2 fam0001

More cartoons? Get the book:

cover promo

Get your copy now–just click the button below:


cartoon guy lg

Flight Crew: Some Things You Just Don’t Get Over.

Posted in air travel, airline, airline industry, airline pilot, flight attendant, flight crew, pilot with tags , , , , , , , on November 14, 2014 by Chris Manno


Sidelong cross-cockpit glance: yep, it’s a flat top, ex-USMC style, and the bushy but gone gray Magnum PI mustache suggests a time warp. Better times? Easier times? He laughs a lot for a guy on the razor’s edge of disaster. I say nothing.

Ahead cumulus knots itself into towering stacks, each with a cirrus blow-off pointing like a banner to where the fleet’s headed. Same place we are, or so the anvils point. I’m thinking an upwind end run around the billowing, full-sail armada. He’s talking about our Chicago layover tonight.

His wife, a flight attendant, met us at our connecting gate as she passed through the airport. Something in her eyes matched the foreboding that weighed heavy as the tide on my mind. Pleading? Hurt? Wary? I couldn’t tell–yet I know what I know: My Darling Bride, also a flight attendant, flew with her yesterday. And I knew his wife–flew with her many times–before they were married. Then she was bright in the sense of Christmas lights, tiny scattered points of happiness gleaming everywhere. Not any more.

“Takes two to tango,” his words tumble in a snippet from what is more of a forced chatter, or so it seems. I guess if you’re talking you never have to listen. But in the tango of time and fuel, in the dance altitude and storm clearance, may I cut in?



“I’d say left,” my mouth says. It’s his flight leg, but my jet. He’s flying the plane, but I signed for the damages. Upwind is longer, but smoother, safer. The shorter way is too uncertain, could put someone through the ceiling.

“We can top it,” he suggests, sweeping a hand out flat, as if showing a planar space between our altitude and the boiling cumulus rising ahead. Ah, there’s a thought. Climb another two thousand feet to max habitable altitude for the weight–which puts you into the coffin corner where the difference between high-speed buffet and low speed stall is a handful of capricious knots. If there’s any turbulence, those knots stop the tango and freestyle. Good luck.

His wife had mechanically recited to mine the all-too-familiar litany. “We just bought our ‘captain’s house’ … he wants me to quit flying … he can hold captain in Chicago … get a crash pad there …” In the jumpseat confessional, all is forgiven, but there will be penance nonetheless. Ahead, lightning licked the bruised-blue cloud bases, promising a fresh evening hell for Kansas and eventually, Illinois.

“Let’s take it over the top, direct,” he says with finality. “Stay on time.” Unsaid, but mentioned earlier: “she gets in an hour ahead of us.” Gentleman that he is, he doesn’t want her waiting. She flies for a different airline, but even after working her way over to our terminal, she’ll still have time to kill.

The thing about fiery cumulus and boiling sky is this: you really don’t know how it’s going to turn out. Never mind about the paper algorithm of options and assets, timing, clearance and margins, in real life, you just never know.

I key the hand mike. “Center, we need twenty left for weather.”

He slumped a little. Peeved? The perfect plan set back a few minutes? Can’t tell. Doesn’t matter. We swung wide upwind.


I glance at the cloud tops, anvils aglow with the molten sunset. Some storms seem to fade, to lose their fire when the heat of the sun goes away. But this towering mess seemed the type that would thunder ahead regardless.

“Some things,” I say, “Some things you just can’t get over.”

Deaf ears. He was already hundreds of miles ahead, prattling on about Geno’s and where they’d watch the mind-numbing circularity of NASCAR (“She gets it–and me!”) inside The Loop.

Shouldn’t be in too much of a hurry, too far down the road, I thought to myself. Some things you just never get over, and really, you probably shouldn’t try.

 More? Read on. cvr w white borderThese 25 short essays in the best tradition of JetHead put YOU in the cockpit and at the controls of the jet.

Some you’ve read here, many have yet to appear and the last essay, unpublished and several years in the writing,  I consider to be my best writing effort yet.

Own a piece of JetHead, from Amazon Books and also on Kindle.

amazon order button


Your Pilot Isn’t Thinking About Your Connection–and That’s Good.

Posted in air travel, airline, airline cartoon, airline delays, airline industry, airline passenger, airline pilot, airline pilot blog with tags , , , , , , , , , , , , , , , , , on November 7, 2014 by Chris Manno



There’s a blessed silence in the cockpit right before pushback, immediately after the number one flight attendant reports “cabin ready,” and slams the cockpit door securely shut. Before that, the usual boarding chaos filters through the open cockpit door, the clatter of catering the forward galley, ramp workers stepping in to deliver some cargo paperwork, maybe some aircraft maintenance techs wrapping up required service or repairs.

But the noise and activity isn’t all that ends with the door slam. We call it “sterile cockpit,” an industry-wide concept rooted in the best Crew Resource Management (CRM) practices that dictates all non-flight essential conversation ceases in order to focus solely on the prescribed, often complex procedures required to fly the jet.

board prozac 10001

In other words, leave all distractions behind and keep your head in the game. And I take that concept a step further–I clear my mind of everything except procedures (there are a multitude) and situational awareness: he’s moving, we’ll wait … wingtip clearance here … wind shift, at least for now … we’re heavier than planned.

Not just sterile cockpit verbally, but mentally as well. When you’re moving eighty tons of metal and a hundred sixty warm bodies, there’s no room for distraction. My airline (like most, I assume) has done a good job of minimizing outside considerations through the basic premises from which the pilot-in-command operates.


For me that means I’ve “pre-worried” about the extraneous considerations–both yours and mine–and for the good of all, I’ve put them aside, compartmentalized them, and now look beyond them. When I say yours, I mean your down line connection, your time schedule, your reason for flying whether business or pleasure. Mine often overlap yours–my days off, my family plans, my important events, even my own physical stress of time zone shifts, late hours that could creep later, and my pay considerations.

Doesn’t mean these concerns are invalid, unimportant or dismissed–they’re just not on my mind as I balance crucial flight variables as they unfold. They’re fully addressed in the basic premises of our airline operation, stipulated in a hierarchy a passenger might not like, but which makes the most sense for a safe flight operation:

First, safety, second, passenger comfort and third, schedule. Yes, your connection, even your arrival time, is in third place. Just remember, I have similar personal concerns and I’m putting them completely aside as well. Here’s why.

A recent Flight Safety Institute report highlighted one of the factors that contributes to the comparatively high accident rate per flight hour experienced by air ambulance operators. One factor mentioned was the very real life or death pressure perceived by the pilots: if we don’t land on this spot, at this time, regardless of circumstances, a life may be lost.

That’s a very vivid and understandable urgency that would be difficult to put out of a pilot’s awareness. Nonetheless, the air ambulance operators with the lowest accident rates are the ones who’ve put CRM at the forefront, refocusing on flight safety limitations as a governing principle and setting aside all else.



Now, your kid’s birthday, your business or other event, yes, they’re important–so are mine. But they aren’t life or death, are they? But as flight distractions, whether it’s an air ambulance or an air carrier, they could easily become exactly that.

From the moment we push back, the clock in my captain’s mind runs on weight, not minutes: how many pounds of fuel do I have, which translates into the ability to remain aloft. So, when you (or maybe a commuting crewmember, to be fair, asks “can we fly faster to make up time,” the real question in my mind is “can we afford to gamble by shortening our available fuel duration, and to what purpose and at what cost?” Less holding time available at our destination, maybe requiring a more stressful approach? No way.

scat vomitThe answer to “purpose” would be to shave off 5 to 10 minutes–hardly worth it–at the price of degrading our ability to arrival delays because of an increased fuel burn for speed. The question “can we top this weather rather than circumnavigating the area to save time” brings the opposite answer: maybe, but the more prudent option is to avoid–so we’ll spend the extra time (sorry about your connection–and mine) to do that.

And if you think we as pilots don’t have crucial connections, think again: besides losing pay in a misconnect, there’s more. For many crewmembers, even a ten minute late arrival can mean the difference between getting home or spending a night in a hotel at their own expense and losing a day with family. Sure, I eliminate that worry by not commuting, but crew base positions are determined by seniority–junior pilots and flight attendants can report to work and receive the official notice, “as of next month, you are based a thousand miles from home.”

That all needs to wait outside the cockpit door. Inside, we must focus on the vital flight considerations that trump all distractions.

Again, arrival time–and connections–hang in the balance, but that’s a distant third place behind safety. So yes, I’m not thinking about your connection–and you should be glad. Because that’s exactly what you’ve paid me for, and you deserve no less than the safest, most professional flight, no matter how long that takes.

 Fly the jet firsthand: cvr w white borderThese 25 short essays in the best tradition of JetHead put YOU in the cockpit and at the controls of the jet.

Some you’ve read here, many have yet to appear and the last essay, unpublished and several years in the writing,  I consider to be my best writing effort yet.

Own a piece of JetHead, from Amazon Books and also on Kindle.

amazon order button

Airliners, Ebola, Myths and Facts

Posted in air travel, airline, airline cartoon, airline industry, airline passenger, airline pilot blog, flight crew, jet, passenger with tags , , , , , , , , , , , on October 2, 2014 by Chris Manno


Airliners, Ebola, Myths and Facts

The most recent communicable disease being linked with air travel as a possible factor in its spread is Ebola, which joins a long line of other contagions, such as SARS, H1N1, Hepatitis and even the basic flu, in the screaming air travel headlines.

There are two ways in which air travel could actually be a factor in the spread of such infections. First is the simple reality of transporting those infected to an uninfected area, and second is the propagation of infectious elements among people near the disease carrier.

This last consideration is medical and comes with contingencies well beyond my level of expertise. But what is absolutely common knowledge is that countermeasures in any public place–which an airliner is–are rudimentary. Your airline seat–like your theater seat, your seat at a dinner table, a taxi cab, a bus, a classroom, or any public area–is not sanitized before your use, no matter who sat there before you. That’s the public health standard in the modern world.

Yet the media rushes to the airport to show file footage of an airliner, then grab man on the street interviews with deplaned passengers, asking if they’re concerned about being exposed to [fill in contagion du jour] from other passengers who have visited [fill in global contagion hotspot] from possible proximity to an infected person.


It’s a short leap from there to certain urban myths about air travel. First, and most persistent yet absurd, is “passengers are in a sealed tube, breathing the same air.”

The reality of an airliner is yes, the hull is pressurized, but no, it is not sealed. In fact, the fundamental link between pressurization and air conditioning on a passenger airliner at all altitudes is a constant outflow from the jet in flight, into the atmosphere. The controlled outflow is key to moving volumes of air through the cabin in a deliberately designed pattern for many vital functions beyond passenger comfort.

In a Boeing 737-800, that carefully crafted flow pattern drives air from two air conditioning systems through the cabin and cockpit, down through the forward electronic equipment bay below the cockpit where it picks up residual heat from electronic systems to keep that vital equipment at optimum operating temp, then the airflow proceeds back around the cargo compartment, keeping that compartment from getting too cold, then overboard through an automatically modulated outflow valve.

Key to that process is flow. The plane is not sealed, so constant airflow is mandatory–and here’s where another urban myth surfaces: airlines are limiting airflow to save money.

The fact is, airlines are increasing airflow to save money: in our Boeing, we have two large, powerful recirculating fans driving airflow which in basic Venturi logic, draws air from the air conditioning systems and eases the workload ultimately on the engines from which the bleed air is tapped and thereby increasing fuel mileage.


The urban myth about decreased aircraft airflow to save money probably originated in the early seventies when the OPEC oil embargo drastically spiked fuel prices. Airline engine technology was simpler and less efficient before today’s high-bypass fan engines were developed. But even then, less bleed air really never improved airline fuel burn and regardless, an jetliner was never a sealed tube and always required metered outflow balanced with input to maintain pressurization.

“Raising the altitude in the cabin to save money” is the third urban myth with no basis in fact. First, in the Boeing, pilots have control of the rate of change only–the cabin altitude is set at a constant differential between inside and outside the hull based on maintaining the strength of the fuselage. Hollywood may have inspired the myth that pilot can “raise the cabin altitude,” but the only thing we can actually do is climb or descend and when we do, the pressurization systems maintain a constant differential and a constant airflow in order to maintain structural integrity of the fuselage.

So back to my original point: yes, airliners are the hardware of mobility that now mixes populations experiencing regional outbreaks with others a world way, but only in the modern sense of scale: all continents are now linked by air travel in hours rather than days or months of travel. But travel itself is the fundamental reality of the twenty-first century, period.

And that mode of travel, “air travel,” is neither conducive to propagation any more than any other public place, nor is any airline adding any infectious risk to “save money.” The most glaring stupidity in that persistent myth is the vital contingency the the flight crew must blindly increase their own health risks to do anything of the kind.


In the passenger airline flight crew world, we often refer to an airliner as “the flying Petri dish,” because people with every communicable disease board, fly, sneeze, hack and cough just as they do in any public place. But that’s no different than the environment endured by the first grade teacher, the restaurant waiter, or pediatric nurse.

And the airline seats are about as “sanitized” as the movie seat you sat in, the tray table as “clean” as the restaurant tabletop the busboy just wiped with a wet rag dipped in tepid, hours-old water from a well-used bucket.

In other words, as far as infectious disease exposure risk, an airliner is just like any other public area–we just move faster and more frequently from place to place. It’s not a sealed tube, no one is reducing airflow or raising the cabin altitude to save money.

So use common sense about flying, recognize the airliner cabin as a public place and behave accordingly (thanks for mopping the lav floor with your socks, BTW), and breathe easy when you do, knowing the truth about these unfounded flying myths.

More insider info? Step into the cockpit:

cvr w white border

These 25 short essays in the best tradition of JetHead put YOU in the cockpit and at the controls of the jet.

Some you’ve read here, many have yet to appear and the last essay, unpublished and several years in the writing,  I consider to be my best writing effort yet.

Priced at the printing production cost, this collection is not for profit–it’s for YOU to keep.

Own a piece of JetHead, from Amazon Books and also on Kindle.

amazon order button


Get every new post delivered to your Inbox.

Join 9,943 other followers

%d bloggers like this: