Archive for the passenger Category

Flying an Airliner After an Engine Failure on Takeoff

Posted in air travel, airline industry, airline passenger, airline pilot, airline pilot blog, airline safety, airliner, airliner take off, airlines, fear of flying, flight crew, flight training, GE 235, jet flight, passenger, TransAsia crash with tags , , , , , , , , on February 7, 2015 by Chris Manno

Flying an Airliner After an Engine Failure on Takeoff

I get asked this question a lot as an airline captain: can an airliner survive an engine failure on takeoff? The answer is, yes and no.
image

Here’s the “yes” part of that: every multi-engine airliner in service today is designed and certified to continue a takeoff after an engine failure and fly on one engine, provided that the performance limitations are not exceeded and the correct single engine procedures are followed exactly.

Which brings us to the “no” part: if performance and control limitations are exceeded, or incorrect remedial procedures applied, chances of a successful single-engine takeoff and climb are slim at best.

Here’s a close look at the variables. First, the performance limits. Can an airliner execute a normal passenger flight with just one engine? From brake release? Of course not. What it can do is continue a takeoff if an engine fails with one inflexible limit: you must have achieved the correct minimum speed prior to the engine failure in order to successfully continue the take-off with only the remaining engine(s).

That speed is called Critical Engine Failure Speed (CEFS). To be exact, CEFS is the minimum speed you must have attained with all engines in order to successfully accelerate to takeoff speed after an engine failure, and then within the runway remaining, lift off and and cross the departure end of the runway at an height of at least 35 feet.

AIPTEK

Stopping with a failed engine is a whole different discussion, to be addressed in a future blog. For now, consider the engine failure and the takeoff being continued. If we have met or exceeded the CEFS, we will continue the takeoff which is critical to down-line obstacle clearance.

The go-no go speed is called “V-1,” which is simply “Velocity 1,” the decision speed on takeoff roll: if you’ve attained V-1, you’re able to fly. If you’re at V-1, unless you’ve started braking, you’re committed to flight because you may not be able to stop within the remaining runway.

For me, life becomes easier at V-1: we can, and will, fly. That’s what the jet (and I) was intended to do–the thought of bringing tons of hurtling metal and fuel to a stop in the remaining runway is not appealing to me. In fact, I need less aircraft systems to fly than I do to stop, including no blown tires, operative anti-skid and spoilers. In that split second abort decision, how can I be sure I haven’t lost an electrical system that would inactivate the anti-skid, or a hydraulic system that could affect the spoilers, or a blown tire that would take out 25% of my braking–and maybe cause a wheel well fire?

image

The answer is, I can’t be sure, but I can fly with every one of those components inoperative, and to a pilot, flying a sick jet is preferable to wrestling a sick multi-ton high speed tricycle to a stop. So we fly, if we can do that safely.

My discussion from here pertains to the Boeing 737-890 aircraft I fly, but I would add that all airliners are certified to this same performance standard. Procedures vary, but the single engine performance standards are similar.

So in the event of an engine failure beyond CEFS, at rotate speed we will rotate normally and begin our obstacle clearance climb. This is where crew action is critical.

The first indication of an engine failure in the cockpit will typically be a yawing motion due to the imbalance of thrust between engines. Whether that occurs on the runway or, more likely, in the air, the response is the same: add as much rudder as is required to slew the nose back to normal flight. That’s critical for two reasons. First, the runway clear zone (the area over which you must fly) extends forward from the runway centerline. If you curve laterally away from the centerline, you lose the obstacle clearance protection of the runway clear zone.

Second, the correct amount of rudder eliminates the need for aileron use, which comes at a price: if enough aileron is input, wing spoilers will deploy, inducing drag. This is crucial because drag limits the climb capability which is a defined gradient required to attain obstacle clearance altitude.

image

So here’s the “yes” part again: if the aircraft weight is within prescribed limits, if the correct speed is maintained and the specified climb gradient is flown, and the lateral ground track of protected airspace is tracked, then yes, the takeoff and climb-out is certified to be successful.

Do we, in the event of an engine failure, add power on the remaining engine? Generally, no. Why not? First, because the calculated takeoff power setting is designed to be sufficient to allow a single engine takeoff and climb after an engine failure. Yes, more thrust is available and if you need it, you use it. Our CFM-56 engines are electronically controlled to protect against over-boost damage, but here’s a pilot thought: if the climb is proceeding correctly, why introduce more adverse yaw, and why strain the remaining engine?

image

Now, crew response. The person noticing the engine failure is normally (but not always) the pilot flying who feels and counters the yaw. That person, or often both pilots, call out what they see: “Engine failure, number __,” or “engine fire, number ____.”

Then, this and only this: maintain climb speed (and thereby climb gradient) and ground track. Let’s backtrack a bit. Before each takeoff, on taxi out I verbally review three altitudes with my First Officer: the field elevation, the engine out altitude, and the minimum safe altitude for that airport. And that’s our focus in the event of an engine failure: climb at the correct speed on the clear zone path to the single engine climb altitude.

A wise old CRM (Cockpit Resource Management) instructor used to tell all the pilots at my airline as we cycled through for our annual recurrent flight training and evaluations the same very shrewd piece of advice for this and any other flying emergency. He was a crusty, retired Air Force fighter jock who’d hammer this home: “Whatever happens, before you react, you take a deep breath and say to yourself, can you believe this sonofabitch is still flying?

Even after that, we don’t react–we respond appropriately. That is, between the two of us, we agree on what we have, and that can only be three things: engine failure, engine fire/catastrophic damage, and engine overheat. Identifying the problem and the engine is important, because the corrective procedures differ.

So in the minute or so that it takes to climb to our pre-briefed engine out altitude, we’re both analyzing exactly what happened, and which checklist we will bring out to accomplish step be step.

image

What if the First Officer, rather than me, is flying when the failure occurs? From my point of view, and I’m coming up on 24 years as captain, I say so much the better: all of our F/Os know exactly what to do and moreover, they’re flying, they have the feel of the jet and the corrections in–why throw a control change into the mix and try to handle it cold?

As an added bonus, as the pilot monitoring the pilot flying, I’m downloaded of the physical stick and rudder challenges which are significant single engine. I can concentrate on analysis, procedures, radio calls and clearances because “Bubba,” as they referred to F/Os in flight engineer school, knows what he’s doing.

So here we go: what do we have? Simple flameout? Do we have RPM? If it’s not turning, there’s damage. Temperature range? Fire? Oil pressure? Only when we both concur will I, being the pilot not hands-on flying, pull out the checklist and read it step by step as I accomplish each with the F/Os concurrence at each step.

Here’s where discipline and crew coordination is key: NOBODY is going to start flipping switches on their own and whatever is done will be done only as I read the procedure. The best way to mangle any emergency is for anyone to go solo and start operating off script.

In every engine failure scenario, there comes a point in the corrective procedure where a throttle must be closed and a fuel lever shut off, possibly a fire switch pulled. The throttle of course reduces the thrust, the fuel lever cuts off the fuel supply to the engine (it’s going to flame out) and the fire switch shuts off fuel at the tank and the wing spar (in case the engine fuel shutoff valve is damaged by fire or explosion) as well as hydraulic fluid, pneumatic bleed and electrical power.

image

These actions are drastic and with only one engine operating, they must never be done independently, unilaterally or without a double-check and concurrence. They are also most advisedly done only after level at the single engine altitude with obstacle clearance assured.

Here’s how that plays out in the cockpit, verbally and physically:

Me, reading the critical steps: Fuel Lever, affected engine (confirm)

[pause] I touch the correct fuel lever, F/O concurs; F/O guards the good engine fuel lever with his hand.

Me: Cutoff. [I perform the action] It is cutoff.

Then we go to the next step in the checklist, me reading, pausing for concurrence and confirmation. Bubba is focused on aircraft control, altitude and airspeed, validating each checklist step I read before and as it’s taken. I’m focused on the procedures, plus backing up Bubba’s flying.

If I were flying when the failure occurred, same process, just reversed roles. Each and every step in each appropriate checklist will be accomplished with crew coordination till we are ready to return and land safely.

The easiest engine failure to handle is a simple failure or “flameout.” You may try a restart under some circumstances, or you might not take the time and instead, just get the jet ready to land. The most difficult failure is the fire and severe damage situation, but it’s handled the same regardless: carefully, step by step with collaboration and concurrence.

Never singlehandedly or without concurrence. Because the deadly reality of two engine aircraft is this: if you apply any of the required procedures to the wrong engine, the only engine sustaining your flight, the results will be disastrous.

I’ve had to fly four actual single engine landings in MD-80 jets for various reasons, none so far in the rugged, reliable 737. We practice engine fires and failures every nine months in our recurrent simulator training, handling multiple scenarios each four hour session. The key to a successful single engine incident is procedural integrity, crew integration and communication, controlled pacing, and standard operating procedures followed to the letter.

In the end, a successful engine failure landing comes down to coordination, discipline, adherence to standard procedures and as my old fighter pilot buddy used to say, taking that second or two to collect your wits and say, “Can you believe this sonofabitch is still flying?”

For those who don’t adhere to all of the above, it won’t be flying for long.

Help for Fearful Flyers

Posted in air travel, airline cartoon, airline delays, airline passenger, airline pilot, airline pilot blog, airline ticket prices, airlines, airport, airport security, fear of flying, flight crew, jet, mile high club, passenger, pilot, travel with tags , , , , , , , , , , , , , on January 31, 2015 by Chris Manno

Cover Airline Book 1Here’s a chapter from my brand new book, “Air Travel and The Death of Civility: A Field Manual & Survival Guide,”  crammed full of shortcuts, insider info and little-known techniques to make your air travel as stress-free and smooth as possible.

Available now from Amazon.com Just click on the title link above, or search on Amazon.

Help for Fearful Flyers

Please don’t feel alone because you’re not: many passengers have some level of nervousness about flying. It’s just another version of the anxiety many feel at the dentist, the emergency room; virtually anywhere new, unfamiliar, and potentially uncomfortable. In fact, people and businesses actually cultivate and market exactly this type of anxiety at theme parks with roller coasters, haunted houses, and terrifying thrill rides. Some people actually crave the feeling.

What a nervous flyer feels is perfectly normal and need not eliminate the option of flying. That fact alone is reassuring, especially in the case of groups or couples who limit their travel options due to the reluctance of one individual to fly. Often, a large part of a passenger’s unease is an understandable fear of the unknown, which is essentially just unfamiliarity with a strange new environment. So let’s fill in some of those blanks in your flying knowledge and then, we’ll discuss techniques to manage your unease.

Land in crud

First, let’s consider the aircraft and its durable, ingenious engineering. The designers of our jet have refined their process of building and manufacturing our airliner through decades of progressively better models with ever-improving materials and techniques.

The aircraft was built to rigorous standards of strength and durability far beyond what we will ever encounter in flight. To be specific, the FAA certification standard required the aircraft to demonstrate that it could withstand forces in turbulence well beyond that which has ever been recorded, plus an additional margin, with complete airframe integrity. That means that regardless of turbulence, there will be no airframe damage or structural deformity, we’ll be still flying just fine. Basically, this aircraft is not coming apart in any conditions we encounter in flight. You don’t worry about your car running over a bump at high speed, over railroad tracks, or even a curb–but it’s not built to anywhere near the strength standard of our jet.

bumpy twitter

You’ll actually notice less turbulence in flight these days, due to a couple of assets we use. First, radar technology has advanced not only in display resolution, but also in a predictive capability: now, our digital radar and on-board computers are sifting through thousands of bits of digital data gathered by radar and other systems, giving us an accurate prediction of where turbulence may occur. Our radar is integrated with the Global Positioning Satellite system and knows where it is at all times, allowing it to separate terrain features like mountains from weather echoes. The radar aims itself correctly and has an accurate, interactive display of over 300 miles ahead of the aircraft. The radar has a “pop-up” feature that allows it to show on our displays even if it’s not selected, when it finds a weather problem many miles away that we need to know about.

Add to that the ground-based computer analyses that are charting patterns of turbulence, which are then automatically up-linked to us in flight, plus the exchange of real-time information between pilots and air traffic controllers and the end result is less turbulence encounters, and lighter turbulence when encountered. There are days when rides just aren’t completely smooth and we’ll encounter some bumps. But rest assured, we’re working our way through the sky in the smoothest flight path possible.

raining luggage0001

Visualize the air we fly in for the fluid that it is, with currents, eddies, flows, and even the wakes of other aircraft also aloft. Crossing a jet’s wake is much like crossing that of a boat: rumbles, some bumping, then we’re past the wake. Atmospheric eddies and currents can cause similar short periods of bumpiness, or even just a mostly choppy sea of blue. If that persists, we’ll search for a smoother altitude–just give us a few minutes to coordinate a clearance from air traffic control.

Mountains cause the atmospheric equivalent of river rapids in the airflow, even at altitude, because orographic features like ranges and peaks act like rocks in a stream, causing a rougher ride. That’s typical of a flight path across the Rockies: some bumpiness is not unusual. But you can rest assured that at our flight speed, we’ll pass through the area without delay.

In US airspace, airlines and Air Traffic Control pool weather information to share among all flights, and one designated FAA facility manages traffic and routes around areas of severe weather. With all of these assets working for us every flight, we don’t get taken by surprise by weather.

buck twitter

That type of coordination that shares weather and route information is emblematic of the entire US aviation system, which has had a seventy-year learning curve of development, testing, and refining that has resulted in a strong, reliable oversight and infrastructure for commercial aviation, including

the Federal Aviation Administration, Department of Transportation, and the National Transportation Safety Board. All three in combination provide experienced and comprehensive oversight that makes flying the safest mode of transportation you could choose.

Another highly-developed airline support system monitors our jet in flight. Our technical operations center monitors hundreds of bits of data sent in a non-stop, automated stream from our jet in flight. In flight, I’ve had a message from our round-the-clock tech center print out that said, “Can you verify the vibration on the left engine? It’s reading a little high down here.” The engines alone transmit a huge stream of telemetry to our tech center, and that data allows long-range trend diagnosis that has all but eliminated in-flight engine failure on the Boeing jets I fly. Trend data and years of diagnostic experience have allowed Boeing, our

emo support 1

tech staff, and our maintenance center to keep aircraft systems in peak operating forms.

From years of firsthand experience, I can say Boeing jets in particular are finely engineered, rugged and reliable American-made jets, and that’s the main reason I fly them. Thousands of hours in Boeing cockpits have given me every confidence in the strength, power, and versatility of these jets which are capable of handling anything we could encounter in flight.

I’m fairly typical of the pilots you’ll find in command of your flight, in my thirtieth year with my airline, my twenty-fourth as captain. I was an Air Force pilot before that, and like my colleagues on the flight deck, I have the singular goal of flying safely, procedurally perfectly, and always conservatively. I have three back up plans for every eventuality and firmly believe there is nothing I could face in flight that is beyond my capability. That’s not only due to experience, but mostly because of years of relentless, ongoing advanced training not only in full-motion simulators, but through hours of classroom instruction, systems training, and recurrent exams. I have every confidence in the copilots I fly with who share the exact same goals, procedures, and training. In the cockpit, we’re unanimous about one thing: the safe, efficient, and smooth operation of our flight.

Pasta entree

So, knowing all this, what else can you do to ease the stress of a flight? First, keep the above facts in mind, reviewing as needed leading up to your flight and even on board. Second, keep track of the elapsed time. Your airline app will tell you how much flight time to expect, as will the captain in his PA and also, the flight attendants will normally tell you the planned flight time in their PA. Whatever the total flight time is, divide it in half. Now, keep track of the first half, which will elapse much faster for you than the total time. Just that half, count it down. Upon reaching halftime, relax and rejoice: from there you will count down an ever-shrinking time period much shorter (and growing ever shorter) than you have already endured quite successfully.

Concentrate on your breathing, keeping it steady and calm. Reading matter, a video, music: dive in, focus on that. Claim a little “me” time and catch up on reading or viewing that you never seem to have time for otherwise.

bigg ass twitter

Keep an eye on your halftime benchmark, noting your steady progress. Bear in mind the fluid aspect of air and anticipate some waves in this most vast sea we’re sailing through. Be confident that your extensive flight team, including the crew on board as well as our airline technical, operational, and dispatch staff constantly monitoring and interacting with us in flight, plus the air traffic control network of pros handling our route passage. We’ve all been doing this for a long time and as our record shows, we’re darn good at it.

I’ve used the countdown technique at the dentist office (my “nervous flyer” experience) as well as when running several 26.2 marathons. It works!

There may never be a time when a nervous flyer actually enjoys a flight, but there’s no reason a flight can’t be tolerated with minimal stress with a little forethought and perhaps, an equal amount of distraction with entertainment or conversation. Here’s a summary for you to review as needed:

Summary:

• Unfamiliarity is often at the core of preflight anxiety. Review the contents of this book and this section, and give yourself credit for your successful progress through the various steps required for a plane flight.

• Your aircraft is a tough, versatile, well-designed engineering marvel that has been refined over years of improvements.

• Constant monitoring of the aircraft’s vital systems in flight allows reliability and safety that makes air travel the safest travel option.

• Weather systems are a reality of life, but we have advanced technology on-board as well as on the ground keeping us well ahead of weather challenges and well clear of danger.

• The atmosphere is a fluid and behaves much like a large body of water, with the same, normal characteristics such as currents, flow, eddies, wakes, and the occasional bump.

• Your pilots are highly experienced and dedicated solely to the safe, professional operation of your flight.

• Use the countdown system of flight time to your advantage, watching your time aloft grow ever shorter.

Cover Airline Book 1Other chapters include buying a ticket, getting the best deal and the right seat, check-in and security shortcuts, on-board perspective, aircrew insider perspective, damage control and much, much more. Read this book, then travel like a pro!

The perfect gift for someone about to travel, for those reluctant to fly–and for those eager to fly and wanting to have a stress-free, excellent air travel experience.

Order your copy from Amazon.com

Just click this link.

Airline Amazon screenshot

Flying a Jet in the Los Angeles Storms, December 12, 2014.

Posted in air travel, airline pilot blog, airliner, airlines, airport, flight crew, jet, passenger, pilot, travel with tags , , , , , , , , , , , , , , , , , on December 13, 2014 by Chris Manno

 

“That’s some catch, that Catch-22.” –Captain Yossarian, Catch-22

Here’s the deal, captain: you’re flying a 65 ton jet into Orange County airport, the famously short 5,700 foot runway. The stopping distance required there is increased drastically if that runway is wet–and yesterday, “wet” was an understatement: Los Angeles was drenched in a ten-year storm dumping inches of rain in a matter of hours.

And here’s the catch: you want to have the least amount of fuel–which is weight–on board for landing to permit stopping on the short, rain-slicked runway, but at the same time, as much as possible for a divert if necessary to Los Angeles International Airport or to Ontario Airport, both of which have long runways.

image
But it gets worse. The best bet for a diversion is Ontario, because the inbound air traffic is light compared to always busy LAX. But you’ve been watching on radar two thunderstorms sitting exactly on the top of Ontario, hardly moving. LAX is reporting heavy rain which means inbound delays and you know from experience that the inbound LAX air traffic flow includes many long-haul flights from Asia, Europe and points beyond. You don’t want to elbow into their already depleted fuel reserves.

Here’s your set of decisions: who will fly the approach at SNA? It must be done perfectly, given the conditions, which are reported as 1 1/2 mile visibility in fog and heavy rain, with 200 foot ceiling. The touchdown must be exactly on the right spot–neither too early nor too late–and exactly on speed, if we’re to stop on the remaining runway.

What is your plan: SNA, and then what? No holding fuel–on a missed approach, you can either try again, or divert to Ontario (thunderstorm overhead) or LAX.

You already know landing in a thunderstorm at Ontario is a poor choice. And you know, realistically, you don’t have the fuel to handle the air miles entry into the LAX landing sequence will require. A second try? Not even.

Okay, captain–DECIDE.

Here’s what I chose on each question. First, I had the F/O fly the approach. Why, when it had to be done exactly perfectly under bad conditions? The answer is, because he damn well knows how to fly an ILS, in any circumstances. If he flies the approach, fully investing in the stick-and-rudder attention demands which are large, I can focus on the big picture: what’s the Ontario storm doing? Watching LAX too on radar. Updating SNA winds, our fuel, our position.

Above ten thousand feet, we talk. I tell him what I’m thinking, then ask: what am I missing? Tell me your ideas? And as importantly, are you okay flying the approach? Because a bad night of sleep, a sore shoulder, anything–if you’re not up to this, I’ll do it.

image

And we have one shot, I tell him, then I’m putting clearance on request (actually did that as soon as we were switched to tower frequency) to Ontario. If the storm looks impassable on radar, option 3 is declare an emergency for fuel and barge into the LAX landing sequence. Don’t like that idea, but if we’re down to option 3, there is no other choice.

I also plot the magic number for SNA winds: 110 degrees and 290 degrees. For the precision landing runway, any wind beyond those two cardinal points strays into the verboten tailwind area. Asked about landing the other direction and the answer was: long delay. Not possible, for us.

Already requested and had the data linked chart for our landing weight sent up to the aircraft: we require 5,671 feet on a wet runway, good braking, zero tailwind. Each knot of tailwind adds 150 to the distance required, so even one knot of tailwind exceeds the runway length.

I switch my nav display from a compass arc to a rose: the full 360 display. I’m getting wind checks all the way down final and watching my cardinal points, alert for an excedence.

image
There’s a wind display on my HUD, too, but I realize that’s a calculation that is at least 15 seconds old. Eyeballs and experience tell the tale: he’s glued mostly to his instruments to fly a flawless ILS, but I’m mostly eyeballs-outside, monitoring speed, azimuth and glide path through the HUD, but paying attention to the realtime wind cues. He knows if I don’t like what I see, I’ll say, “Go-around” and we will be on to option 2 immediately. I know that if he doesn’t like the way the approach is going, he’ll announce and fly the go-around without any questions from me.

I tell him that if everything is stable on approach, let’s make a final wind analysis at 200 feet. If we’re both satisfied, silence means we’re both committed to landing.

DSCF2859

I review in my head the rejected landing procedure. That is, if we touch down but I judge we can’t stop, throttle max, speed brakes stowed, flaps fifteen, forward trim, back into the air.

Clear your mind, focus on the plan: hate math, but I can sure see the compass depiction that means a verboten tailwind. Poor viz in heavy rain, but once I spot the VASIs, I can tell what the wind is doing to us. He’s flying a hell of a good approach. One final wind check at 200 feet. “That’s within limits,” I say, just to let him know that component is fine. He’s flying–if it doesn’t feel right, I want him to feel free to go-around immediately.

I don’t want to see high or low on either glide path or speed. No worries–he’s nailed it, both are stable.

A firm touchdown, then my feelers are up for hydroplaning: none. Speedbrakes deploy, but we’re not committed until reverse thrust. The MAX brakes grab hold, good traction; we’re fine, reverse thrust, I take over at 100 knots.

Silence in the cockpit. “Excellent job,” I say as we clear the runway, glad we didn’t have to execute either backup plan. Relief, Boeing has built us a damn fine, stable jet for this weather, this day, this runway.

Now, put that all behind–we still have to fly out of here in less than an hour. And do it all again tomorrow.

image

Air Travel Illustrated: The Holiday Flights.

Posted in air travel, airline, airline cartoon, airline cartoon book, airline delays, airline industry, airline passenger, airline pilot, airline pilot blog, airliner, airlines, airport, airport security, cartoon, fear of flying, flight attendant, flight crew, flight delays, jet, passenger, pilot, travel with tags , , , , , , , , , , , , on November 26, 2014 by Chris Manno

Some times words won’t do, or maybe illustrations can do better. Regardless, if you’re flying somewhere for the holiday, this is your life enroute. If you’re home already, here’s what you’re missing.

First, my best advice either way:

holiday 20001

With that in mind, make sensible reservations based upon experience, rather than an idealized hope:

seats apart0001

Flights are packed, so plan your inflight strategy:

safe word0001

Getting a last minute seat can be nearly impossible due to holiday load factors, unless you’re willing to compromise:

image

Keep in mind that you’ll have to handle your own baggage:

image

Prepare mentally for the challenges of airport security:

privacy tsa0001

 

Please board only when your sedative is called:

board prozac 10001

Ignore the pompous guys impressing each other in First Class:

class warfare

Or maybe share your admiration for them as you pass by:

proletariat

 

Realize that children are on-board, so you’ll need to deal with them:

biz traveller0001

And parents, remember it’s your responsibility to discipline your kids on board:

timeout0001

Pay attention to the flight attendants when they speak to you:

tray table0001

And they may be talking to you even indirectly:

image

So pay attention:

connecting gate info

And when I turn on the seatbelt sign, it does mean you:

schmeatbelt0001

Realize that weather can complicate our flight:

scat vomit

So be prepared.

barf bag

Anticipate the post-holiday letdown:

leftover resentment0001

Enjoy your leftovers properly:

reheat turkey0001

And congratulate yourself for traveling and thereby avoiding a worse fate. Bon voyage!

fly 2 fam0001

More cartoons? Get the book:

cover promo

Get your copy now–just click the button below:

Order

cartoon guy lg

Air Travel and the Ebola Circus.

Posted in air travel, airline pilot blog, airliner, airlines, Ebola, flight crew, passenger, travel with tags , , , , , on October 14, 2014 by Chris Manno

 


Ziploc


Air Travel and the Ebola Circus.

“If we couldn’t laugh we would all go insane.” –Jimmy Buffet

Government leaders are frantic to do something, anything, to assuage concern about the potential spread of Ebola. But air travel is neither the problem nor the solution.

Nonetheless, the government answer is, as in so many crises, that even doing a useless thing is better than doing nothing. So we now have “increased screening” at several airports, including JFK. But the problem is, the Ebola patient who died recently in Dallas arrived from Brussels, while the increased screening targets passengers arriving from Liberia, Sierra Leonne, and Guinea. One connection later, as in his case, the possibility of detection is beyond the “new” screening.

 

image

Meanwhile, no mention is made of special screening of international arrivals in Los Angeles, San Francisco and Seattle, all of which have seaports and airports with regular international arrivals from Europe, Asia and the Middle East. The Dallas Ebola carrier could just as easily have entered the US on the west coast–or through DFW, Chicago or Miami for that matter–with no additional “screening.” And the notion that  increasing screening at certain airports is the solution sidesteps the fact that a traveler could arrive in Mexico City or Toronto and simply drive or walk across the border; or, working a cargo, tanker or cruise ship, simply enter through any seaport.  Again, it’s not air travel, it’s global mobility that is the vulnerability.

In any case, the special new air travel screening is really little more than a drug store twenty dollar digital thermometer and a lot of self-reporting. That charade is more theater than medicine, as Ebola has proven time and again, lying dormant well past the initial examination. The “enhanced” screening ignores the majority of the arrivals, and has a limited accuracy due to the incubation period of the disease, for the small minority of international arrivals who are screened. And there’s no special screening for the enormous flow of rail, sea or motor transportation across our borders.

 

Seriously? This is "enhanced screening?"

Seriously? This is “enhanced screening?”

 

And even worse yet, the lynchpin of the “enhanced” screening procedure is truthful answers to posed questions. The Dallas Ebola carrier simply didn’t report his exposure in order to enable his travel and the new “temperature check” wouldn’t have–and didn’t, as he departed Africa–detect the latent disease anyway.

 

image

 

Given the high profile of Ebola as news media rush to cover and broadcast a “scare,” it was inevitable that panic would attend an incident of vomiting on an airplane. But the reality is, passengers getting airsick is as old as air travel itself. I used to take it personally as a pilot, as if I’d somehow not flown smoothly enough. That was until I noted that even just taxiing out from Las Vegas or New Orleans was often attended by hangover puking in the cabin. Now, however, this typical, ugly occurrence warrants a Hazmat response, plus YouTube and Twitter coverage of the unfortunate event.

 

image

 

The crossroads of Ebola and air travel is a cataclysm of the news media at its worst and social media at its best: the tail wags the dog as regular news sources struggle to keep up with the instantaneous digital grapevine of Twitter, Instagram, Facebook and YouTube.

In the end, cable and broadcast media abdicate their responsibilities to investigate and report facts and simply show random, unmediated Tweets and video clips and call it news. As a nation we’re all the worse for indulging in group hysteria, but it seems that nothing is more important for an individual with a cellphone than a shot at the Andy Warhol fifteen minutes of fame which the desperate-for-headlines news media recklessly offers. Culture, unfortunately, trumps common sense and journalistic ethics.

 

image

 

Meanwhile, the government implements showy passenger screening changes for air travel only and calls that prevention, neglecting any meaningful intervention in a global threat by attacking the disease itself. That in a nutshell is the hopeless tragicomedy that is the “first world” public and government response to a deadly plague.

Because while the media microscope is trained on flights and “screening,” the root cause languishes in the background. In reality, controlling global mobility by all modes, and developing a vaccine is the right strategy. But that sensible call to action seldom heard above the media uproar about air travel. Which only confirms for me what a very wise woman I know is wont to say: “We are a nation of idiots.”

So as Jimmy Buffet suggested, we might as well laugh about it while we can, or at least until someone finally (if ever) looks beyond air travel and focuses on a real containment strategy, plus a vaccine. Because as I’ve said, air travel is neither the problem nor the solution.

Meaningful action won’t come from the fumbling “government,” and it sure won’t be the hapless news media. But the joke’s on us until then.

 

image

 

Airliners, Ebola, Myths and Facts

Posted in air travel, airline, airline cartoon, airline industry, airline passenger, airline pilot blog, flight crew, jet, passenger with tags , , , , , , , , , , , on October 2, 2014 by Chris Manno

DSCF3175

Airliners, Ebola, Myths and Facts

The most recent communicable disease being linked with air travel as a possible factor in its spread is Ebola, which joins a long line of other contagions, such as SARS, H1N1, Hepatitis and even the basic flu, in the screaming air travel headlines.

There are two ways in which air travel could actually be a factor in the spread of such infections. First is the simple reality of transporting those infected to an uninfected area, and second is the propagation of infectious elements among people near the disease carrier.

This last consideration is medical and comes with contingencies well beyond my level of expertise. But what is absolutely common knowledge is that countermeasures in any public place–which an airliner is–are rudimentary. Your airline seat–like your theater seat, your seat at a dinner table, a taxi cab, a bus, a classroom, or any public area–is not sanitized before your use, no matter who sat there before you. That’s the public health standard in the modern world.

Yet the media rushes to the airport to show file footage of an airliner, then grab man on the street interviews with deplaned passengers, asking if they’re concerned about being exposed to [fill in contagion du jour] from other passengers who have visited [fill in global contagion hotspot] from possible proximity to an infected person.

IAD 1

It’s a short leap from there to certain urban myths about air travel. First, and most persistent yet absurd, is “passengers are in a sealed tube, breathing the same air.”

The reality of an airliner is yes, the hull is pressurized, but no, it is not sealed. In fact, the fundamental link between pressurization and air conditioning on a passenger airliner at all altitudes is a constant outflow from the jet in flight, into the atmosphere. The controlled outflow is key to moving volumes of air through the cabin in a deliberately designed pattern for many vital functions beyond passenger comfort.

In a Boeing 737-800, that carefully crafted flow pattern drives air from two air conditioning systems through the cabin and cockpit, down through the forward electronic equipment bay below the cockpit where it picks up residual heat from electronic systems to keep that vital equipment at optimum operating temp, then the airflow proceeds back around the cargo compartment, keeping that compartment from getting too cold, then overboard through an automatically modulated outflow valve.

Key to that process is flow. The plane is not sealed, so constant airflow is mandatory–and here’s where another urban myth surfaces: airlines are limiting airflow to save money.

The fact is, airlines are increasing airflow to save money: in our Boeing, we have two large, powerful recirculating fans driving airflow which in basic Venturi logic, draws air from the air conditioning systems and eases the workload ultimately on the engines from which the bleed air is tapped and thereby increasing fuel mileage.

image

The urban myth about decreased aircraft airflow to save money probably originated in the early seventies when the OPEC oil embargo drastically spiked fuel prices. Airline engine technology was simpler and less efficient before today’s high-bypass fan engines were developed. But even then, less bleed air really never improved airline fuel burn and regardless, an jetliner was never a sealed tube and always required metered outflow balanced with input to maintain pressurization.

“Raising the altitude in the cabin to save money” is the third urban myth with no basis in fact. First, in the Boeing, pilots have control of the rate of change only–the cabin altitude is set at a constant differential between inside and outside the hull based on maintaining the strength of the fuselage. Hollywood may have inspired the myth that pilot can “raise the cabin altitude,” but the only thing we can actually do is climb or descend and when we do, the pressurization systems maintain a constant differential and a constant airflow in order to maintain structural integrity of the fuselage.

So back to my original point: yes, airliners are the hardware of mobility that now mixes populations experiencing regional outbreaks with others a world way, but only in the modern sense of scale: all continents are now linked by air travel in hours rather than days or months of travel. But travel itself is the fundamental reality of the twenty-first century, period.

And that mode of travel, “air travel,” is neither conducive to propagation any more than any other public place, nor is any airline adding any infectious risk to “save money.” The most glaring stupidity in that persistent myth is the vital contingency the the flight crew must blindly increase their own health risks to do anything of the kind.

3580148939_dd0fe9274a

In the passenger airline flight crew world, we often refer to an airliner as “the flying Petri dish,” because people with every communicable disease board, fly, sneeze, hack and cough just as they do in any public place. But that’s no different than the environment endured by the first grade teacher, the restaurant waiter, or pediatric nurse.

And the airline seats are about as “sanitized” as the movie seat you sat in, the tray table as “clean” as the restaurant tabletop the busboy just wiped with a wet rag dipped in tepid, hours-old water from a well-used bucket.

In other words, as far as infectious disease exposure risk, an airliner is just like any other public area–we just move faster and more frequently from place to place. It’s not a sealed tube, no one is reducing airflow or raising the cabin altitude to save money.

So use common sense about flying, recognize the airliner cabin as a public place and behave accordingly (thanks for mopping the lav floor with your socks, BTW), and breathe easy when you do, knowing the truth about these unfounded flying myths.

More insider info? Step into the cockpit:

cvr w white border

These 25 short essays in the best tradition of JetHead put YOU in the cockpit and at the controls of the jet.

Some you’ve read here, many have yet to appear and the last essay, unpublished and several years in the writing,  I consider to be my best writing effort yet.

Priced at the printing production cost, this collection is not for profit–it’s for YOU to keep.

Own a piece of JetHead, from Amazon Books and also on Kindle.

amazon order button

Inflight Diverts: Costs, Compassion & Common Sense

Posted in air travel, airliner, airlines, flight crew, passenger, pilot with tags , , , , , , , on May 20, 2014 by Chris Manno

Want to see an airline crewmember’s blood boil? Show them this report from the IATA convention in Madrid today:

image

Well, okay. I realize that diverts are expensive. But there’s more.

image
What’s so bad about that? Everything. First, in flight, nothing is “simple” about a restrained passenger (I’ll get to that below). But worse, besides the cost priority, this next consideration is one steaming plate of wrong for many reasons:

image

 

Where to begin! Let’s sidestep the completely inappropriate “passengers would rather get to their destination” priority and look at the big picture.

First, perspective. The IATA is an industry group comprised of air travel-related businesses, including airlines, travel agencies, and related travel businesses who act as  an advocate to promote the airline industry.

As an airline captain, like most, I share the common goal of supporting a robust airline industry. It’s over priorities that we diverge: the IATA seems largely focused on costs, while crewmembers are focused on–and held accountable for–the safety of the flight and all aboard the aircraft first and foremost, THEN cost.

Here’s where those priorities clash.

Yes, diverts are expensive, among other things: they require quick, accurate and decisive action from the flight crew amidst a field of dynamic and ever changing variables and constraints. In that regard, cost is in the crew decision mix, but obviously it is an inappropriately high priority in the IATA mix.

Here’s where the blood boils in the flight crew veins. Consider the passenger first: what medical conditions are present? What allergies/reactions are in play? What vulnerabilities (meds required, in use, over/under-dosed), physical stress of “restraint” (psychological, cardiac, stroke), impaired breathing/circulation (what if the “restrained” vomits into his taped-shut mouth?), what intoxicants (legal or otherwise) are active, what mental impairment, or other behavior triggers are latent or evident? How secure and for how long is the restraint durable, feasible and reliable?

image

The fact is, airliners are NOT designed with restraining seats. Will “duct tape” and belts or whatever is handy last for the duration of the flight–never mind will the person survive–or will they break free and the situation escalate:

image

Now, the crew, and let’s be real: any experienced flight crew member will eventually (or has already) considered the historically accurate picture of personal consequence that consistently plays out in cases of passenger injury, illness and restraint. Walk through it with me firsthand:

Attorney, in court/deposition: So, [crew position], please for the record state your qualifications to restrain a passenger, your medical experience to monitor and assess the restrained, your law enforcement authority and experience in safe restraint, monitoring and supervision of restrained passengers, your skill at ongoing assessment and specific background of restrained, and your ability to determine how long such restraint is tolerable physically and medically appropriate?
You: [go ahead–answer …]

That’s got every red blooded crew person’s blood simmering, but here’s where the boiling point comes:

image

That’s right: for the IATA, the above court scenario is secondary to the cost of a divert.

Walk with me on diverts for a moment, will you? Last night, on my flight approaching Boston’s Logan Airport.

image

Weather closing in, winds presenting near-limiting crosswinds on wet, short runways, crowds waiting to land and take off. Heavy metal transatlantic birds on the tail end of their fuel curve, inbound. We are too–we have required loiter fuel, but that’s all. Like everyone else.

Two hundred miles out, I calculate fuel burn for divert to Providence, Albany and Hartford. I get the current weather for each. I assess the current weather pattern and how it will affect each. I calculate the fuel required to divert while enroute to Boston for each of the three divert options, plus the fuel required to divert from a missed approach at Boston, which is significantly higher for each.

This gives me the data I need to make a decision: when and where do I pull the trigger, based on fuel requirements, to divert, and where to? Make the best plan, fly it.

Notice my consideration of $6,000 to $8,000? It’s really not part of the picture at 40,000 feet and 500 knots–nor should it be.

Now return to the restrained passenger. Would you figure in your complex decision matrix the $8,000 against the unknowns of securing the situation, much less the life of the restrained and those around him, never mind the in-court answerability you WILL provide at zero miles per hour on land, a completely different, hindsight-based inquisition afterward?

I’m glad the industry lobby and support group focuses on costs in order to keep the very fragile, complex airline profitability mix viable. But I’m even more grateful for my airline’s 110% support of my many divert decisions made over 23+ years (and counting) as a captain.

Divert because a passenger was “restrained,” or rowdy? If only diversion were that simple. Despite the simplistic analysis of those with neither responsibility nor accountability, it definitely is not.

image

 

Follow

Get every new post delivered to your Inbox.

Join 7,962 other followers

%d bloggers like this: