Archive for the jet flight Category

Why NOT remotely piloted airliners?

Posted in air travel, airline, airline industry, airline passenger, airline pilot, airline pilot blog, airline safety, airliner, airliner take off, flight attendant, flight crew, German wings 9525, jet flight, passenger, Remotely piloted airliners, security with tags , , , , , , , , , , , , , on April 16, 2015 by Chris Manno

image

In the wake of several recent airliner losses, talk in the media once again turns to the futuristic concept of remotely piloted passenger jets.

A very bad idea, as I explain on Mashable.com. Just click here to read, or use the link below.

 

http://mashable.com/2015/04/16/aircraft-accidents/

 

z

 

 

Air Travel Mythology: The “Aborted Landing”

Posted in air travel, airline cartoon, airline industry, airline passenger, airline pilot blog, airline safety, airliner, fear of flying, flight crew, jet flight with tags , , , , , , on February 17, 2015 by Chris Manno

737 landing crop

Air a Travel Mythology: The “Aborted Landing”

In social settings, I never bring up the fact that I’ve been an airline pilot at a major carrier since 1985. Because when I do, the mythology springs forth: tales of “harrowing” flights, near disasters, plus lost luggage (not my department anyway).

The flight myth most typical is, in passenger-speak, something like this: “We were about two feet off the ground when the pilot ‘gunned it’ and we shot straight up.” Gunned it?

Ah yes: the go-around, as we call it. We don’t call it “aborted landing” and in fact, until we get on the runway it’s not a landing anyway. Even after touchdown, the only option other than stopping is a “rejected landing,” which is a methodical procedure to get back into the air safely.

The main point is this: all of these options are planned for, procedurally set out and practiced, and in a nutshell–not a big deal.

fd1

Here are the facts, step by step, of a missed approach.

First, the urban legend needs revision. From an airline pilot standpoint–and this is the airline philosophy, in writing–a missed approach is considered a successful approach. In other words, landing is not mandatory for a successful approach. In fact, unless all of the many restrictions upon which a landing is predicated are met, a missed approach is the desired outcome.

There are a number of reasons why a missed approach may be required and the most common reason is not the one most people think of: weather. Rather, is the more mundane issue of spacing.

More specifically, that “spacing” refers to the distance between aircraft landing and ironically, this is typically a good weather problem. In bad weather, aircraft are well-spaced by radar and further, speed is typically assigned by the air traffic controllers. On a clear day, aircraft are allowed to “see and avoid” and thus are not spaced as far apart, nor is the speed as rigidly assigned.

So, now and then one aircraft on final approach may not have enough space behind another aircraft just touching down, which could mean the first aircraft might not be off the runway before the following aircraft would touch down. That’s a no-fault situation: maybe the first aircraft needed to slow down earlier than normal, or, as at DFW today, due to construction some runway exits may be closed, requiring a longer landing rollout.

BA 747

Or, often enough, an aircraft is cleared for takeoff as you approach and they might take longer than expected to roll. That’s routine and actually, it’s their runway once they’re cleared for takeoff. So, we may need to go-around.

The pilots in the second aircraft can see the spacing problem develop and there may be a few things that can help: you could slow to your final approach speed–but I also consider the plane behind ours and how that affects his spacing on our aircraft.

My rule of thumb is usually this: if the aircraft ahead touches down or starts takeoff roll and we’re still at 500 feet or higher, it’ll probably work out. Less? We’ll likely go-around. When we do, the process will be routine and simply, methodically by the book: smoothly add power, arrest the descent, bring up the landing flaps and their drag, retract the gear and smoothly climb to the assigned missed approach altitude and following the prescribed course.

No big deal from the cockpit, but it takes you by surprise in the cabin where you can’t see the situation developing. When power is added and the nose pitches up, the sensation in back is much more dramatic, particularly behind the wings and especially near the tail (ask any flight attendant) where the swing is more pronounced.

Sometimes the power can be overly dramatic: we have a power setting designed for a go-around, but it’s predicated on a last second escape from the lowest descent altitude on the approach–50 feet above the runway, in the Boeing 737-800 I fly. But seldom is the missed approach executed at that rock-bottom minimum, so that much power isn’t really necessary.

image

 

Trouble is, some of the older jets like the MD-80 have autothrottles that know only to set the maximum setting if the go-around power toggle is activated. That causes a dramatic pitch up that may feel, in the words of the immortal Dr. Dole at USC Flight Safety and Accident Investigation Center, that you’re “climbing like a stripedy-ass ape.” Startling to say the least and why many pilots of those older aircraft disengage the autothrottles and manually set power on a go-around from a higher altitude.

Newer jets like the Boeing I fly today have two go-around power settings available with the autothrottles engaged, one with the maximum power response, one with a reduced, more comfortable setting.

A go-around from an approach minimum altitude is the exact same procedure, only with the full power setting, which will make the maneuver more pronounced but nonetheless, routine. That’s necessary for safety: we want maximum terrain clearance with no delay, so the exact same procedure is followed, just more aggressively due to the full computed thrust used.

image

When I see the need for a go-around developing, the first thing I do is talk to the other pilot, getting us both ready to execute the litany of steps if need be. If we’re down to the approach minimums, there’s really nothing to discuss: we execute the standard go-around maneuver.

Traffic problems and spacing are the usual reasons for a go-around, but there may be the occasional go-around due to weather minimums. There’s no “gunning it” or fire-walling the throttles like in the Hollywood depictions, just a methodical and prompt setting of the required engine thrust and an arrested descent, then climb.

In either case, don’t expect to hear much from me on the PA, because in a go-around both pilots need to focus on flying: the altitude, the procedural track, the aircraft configuration and speed. If we’re going around due to weather minimums, we’ll also likely be setting up the navigation and securing the clearances to divert; if not, we need to get re-sequenced back into the landing pattern. None of that on a two man crew works well solo, which is what a PA would require.

So I’ll get to it when and if I can. If not, explain all this to the guy next to you, and relax. Because now you know a go-around is just routine.

More questions about air travel and your flight? Here are the answers:

Cover Airline Book 1

 To get your copy,  just click here, or search Amazon.com

 

 

Flying an Airliner After an Engine Failure on Takeoff

Posted in air travel, airline industry, airline passenger, airline pilot, airline pilot blog, airline safety, airliner, airliner take off, airlines, fear of flying, flight crew, flight training, GE 235, jet flight, passenger, TransAsia crash with tags , , , , , , , , on February 7, 2015 by Chris Manno

Flying an Airliner After an Engine Failure on Takeoff

I get asked this question a lot as an airline captain: can an airliner survive an engine failure on takeoff? The answer is, yes and no.
image

Here’s the “yes” part of that: every multi-engine airliner in service today is designed and certified to continue a takeoff after an engine failure and fly on one engine, provided that the performance limitations are not exceeded and the correct single engine procedures are followed exactly.

Which brings us to the “no” part: if performance and control limitations are exceeded, or incorrect remedial procedures applied, chances of a successful single-engine takeoff and climb are slim at best.

Here’s a close look at the variables. First, the performance limits. Can an airliner execute a normal passenger flight with just one engine? From brake release? Of course not. What it can do is continue a takeoff if an engine fails with one inflexible limit: you must have achieved the correct minimum speed prior to the engine failure in order to successfully continue the take-off with only the remaining engine(s).

That speed is called Critical Engine Failure Speed (CEFS). To be exact, CEFS is the minimum speed you must have attained with all engines in order to successfully accelerate to takeoff speed after an engine failure, and then within the runway remaining, lift off and and cross the departure end of the runway at an height of at least 35 feet.

AIPTEK

Stopping with a failed engine is a whole different discussion, to be addressed in a future blog. For now, consider the engine failure and the takeoff being continued. If we have met or exceeded the CEFS, we will continue the takeoff which is critical to down-line obstacle clearance.

The go-no go speed is called “V-1,” which is simply “Velocity 1,” the decision speed on takeoff roll: if you’ve attained V-1, you’re able to fly. If you’re at V-1, unless you’ve started braking, you’re committed to flight because you may not be able to stop within the remaining runway.

For me, life becomes easier at V-1: we can, and will, fly. That’s what the jet (and I) was intended to do–the thought of bringing tons of hurtling metal and fuel to a stop in the remaining runway is not appealing to me. In fact, I need less aircraft systems to fly than I do to stop, including no blown tires, operative anti-skid and spoilers. In that split second abort decision, how can I be sure I haven’t lost an electrical system that would inactivate the anti-skid, or a hydraulic system that could affect the spoilers, or a blown tire that would take out 25% of my braking–and maybe cause a wheel well fire?

image

The answer is, I can’t be sure, but I can fly with every one of those components inoperative, and to a pilot, flying a sick jet is preferable to wrestling a sick multi-ton high speed tricycle to a stop. So we fly, if we can do that safely.

My discussion from here pertains to the Boeing 737-890 aircraft I fly, but I would add that all airliners are certified to this same performance standard. Procedures vary, but the single engine performance standards are similar.

So in the event of an engine failure beyond CEFS, at rotate speed we will rotate normally and begin our obstacle clearance climb. This is where crew action is critical.

The first indication of an engine failure in the cockpit will typically be a yawing motion due to the imbalance of thrust between engines. Whether that occurs on the runway or, more likely, in the air, the response is the same: add as much rudder as is required to slew the nose back to normal flight. That’s critical for two reasons. First, the runway clear zone (the area over which you must fly) extends forward from the runway centerline. If you curve laterally away from the centerline, you lose the obstacle clearance protection of the runway clear zone.

Second, the correct amount of rudder eliminates the need for aileron use, which comes at a price: if enough aileron is input, wing spoilers will deploy, inducing drag. This is crucial because drag limits the climb capability which is a defined gradient required to attain obstacle clearance altitude.

image

So here’s the “yes” part again: if the aircraft weight is within prescribed limits, if the correct speed is maintained and the specified climb gradient is flown, and the lateral ground track of protected airspace is tracked, then yes, the takeoff and climb-out is certified to be successful.

Do we, in the event of an engine failure, add power on the remaining engine? Generally, no. Why not? First, because the calculated takeoff power setting is designed to be sufficient to allow a single engine takeoff and climb after an engine failure. Yes, more thrust is available and if you need it, you use it. Our CFM-56 engines are electronically controlled to protect against over-boost damage, but here’s a pilot thought: if the climb is proceeding correctly, why introduce more adverse yaw, and why strain the remaining engine?

image

Now, crew response. The person noticing the engine failure is normally (but not always) the pilot flying who feels and counters the yaw. That person, or often both pilots, call out what they see: “Engine failure, number __,” or “engine fire, number ____.”

Then, this and only this: maintain climb speed (and thereby climb gradient) and ground track. Let’s backtrack a bit. Before each takeoff, on taxi out I verbally review three altitudes with my First Officer: the field elevation, the engine out altitude, and the minimum safe altitude for that airport. And that’s our focus in the event of an engine failure: climb at the correct speed on the clear zone path to the single engine climb altitude.

A wise old CRM (Cockpit Resource Management) instructor used to tell all the pilots at my airline as we cycled through for our annual recurrent flight training and evaluations the same very shrewd piece of advice for this and any other flying emergency. He was a crusty, retired Air Force fighter jock who’d hammer this home: “Whatever happens, before you react, you take a deep breath and say to yourself, can you believe this sonofabitch is still flying?

Even after that, we don’t react–we respond appropriately. That is, between the two of us, we agree on what we have, and that can only be three things: engine failure, engine fire/catastrophic damage, and engine overheat. Identifying the problem and the engine is important, because the corrective procedures differ.

So in the minute or so that it takes to climb to our pre-briefed engine out altitude, we’re both analyzing exactly what happened, and which checklist we will bring out to accomplish step be step.

image

What if the First Officer, rather than me, is flying when the failure occurs? From my point of view, and I’m coming up on 24 years as captain, I say so much the better: all of our F/Os know exactly what to do and moreover, they’re flying, they have the feel of the jet and the corrections in–why throw a control change into the mix and try to handle it cold?

As an added bonus, as the pilot monitoring the pilot flying, I’m downloaded of the physical stick and rudder challenges which are significant single engine. I can concentrate on analysis, procedures, radio calls and clearances because “Bubba,” as they referred to F/Os in flight engineer school, knows what he’s doing.

So here we go: what do we have? Simple flameout? Do we have RPM? If it’s not turning, there’s damage. Temperature range? Fire? Oil pressure? Only when we both concur will I, being the pilot not hands-on flying, pull out the checklist and read it step by step as I accomplish each with the F/Os concurrence at each step.

Here’s where discipline and crew coordination is key: NOBODY is going to start flipping switches on their own and whatever is done will be done only as I read the procedure. The best way to mangle any emergency is for anyone to go solo and start operating off script.

In every engine failure scenario, there comes a point in the corrective procedure where a throttle must be closed and a fuel lever shut off, possibly a fire switch pulled. The throttle of course reduces the thrust, the fuel lever cuts off the fuel supply to the engine (it’s going to flame out) and the fire switch shuts off fuel at the tank and the wing spar (in case the engine fuel shutoff valve is damaged by fire or explosion) as well as hydraulic fluid, pneumatic bleed and electrical power.

image

These actions are drastic and with only one engine operating, they must never be done independently, unilaterally or without a double-check and concurrence. They are also most advisedly done only after level at the single engine altitude with obstacle clearance assured.

Here’s how that plays out in the cockpit, verbally and physically:

Me, reading the critical steps: Fuel Lever, affected engine (confirm)

[pause] I touch the correct fuel lever, F/O concurs; F/O guards the good engine fuel lever with his hand.

Me: Cutoff. [I perform the action] It is cutoff.

Then we go to the next step in the checklist, me reading, pausing for concurrence and confirmation. Bubba is focused on aircraft control, altitude and airspeed, validating each checklist step I read before and as it’s taken. I’m focused on the procedures, plus backing up Bubba’s flying.

If I were flying when the failure occurred, same process, just reversed roles. Each and every step in each appropriate checklist will be accomplished with crew coordination till we are ready to return and land safely.

The easiest engine failure to handle is a simple failure or “flameout.” You may try a restart under some circumstances, or you might not take the time and instead, just get the jet ready to land. The most difficult failure is the fire and severe damage situation, but it’s handled the same regardless: carefully, step by step with collaboration and concurrence.

Never singlehandedly or without concurrence. Because the deadly reality of two engine aircraft is this: if you apply any of the required procedures to the wrong engine, the only engine sustaining your flight, the results will be disastrous.

I’ve had to fly four actual single engine landings in MD-80 jets for various reasons, none so far in the rugged, reliable 737. We practice engine fires and failures every nine months in our recurrent simulator training, handling multiple scenarios each four hour session. The key to a successful single engine incident is procedural integrity, crew integration and communication, controlled pacing, and standard operating procedures followed to the letter.

In the end, a successful engine failure landing comes down to coordination, discipline, adherence to standard procedures and as my old fighter pilot buddy used to say, taking that second or two to collect your wits and say, “Can you believe this sonofabitch is still flying?”

For those who don’t adhere to all of the above, it won’t be flying for long.

Brick by brick to the sky.

Posted in air travel, airline pilot, airline pilot blog, flight, jet flight with tags , , , , , , on October 22, 2014 by Chris Manno

 

He’d started out as a brick hod carrier, Frag had, working his way up from the grunt labor of the laden, creaking wooden hod to the old-world artisan status of a bricklayer and along the way, reducing himself in name only to the fractional monosyllable “Frag” as he did. That seemed enough for him, or so he’d said. Because what he did was larger and more weighty than anything he was ever called.

You, college boy,” he fairly barked in a gravelly smoker’s bass that typically ended in a hawk and a spit. “You ain’t nothing now ‘cept dog-hauling a hod for journeyman Frag.” He liked to refer to himself in the third person, and me as College Boy, reluctant hourly summer help, just some kind of cardboard thin cutout of a not-Frag, not perilously balancing a hod on the fourth floor, open girder structure as he had in an old-world, long lost tradesman reality.

And he was right–about that but even more: soaring buildings took shape on blue-lined white paper derived from computer-assisted draftsmen in thin ties and nine-to-five safety free of an unbalanced hod laden with the real heft of mortar and sand, the reality of what they designed, brought to life by the wiry tough, nut-hard muscle of Frag. And to a lesser degree, gofer College Boy me. Bound to the ground, all of them, till Frag gave them flight, story by grunting story.

The sweat equity, dirty fingernails payout of the endless hods Frags and lesser College Boys wrestled–you didn’t “carry” a hod, you balanced it–commanded the dreamscape of architecture and sweatless design to life on a gruntscape of muscle and brick placed just so, line to certain line, mortar scrape by deft, artistic bricklay and tap, brick by a thousand bricks, up into the sky.

I can never forget the achy weariness of burning college boy sinew, sun-baked of dry labor days and even after work, crazy beer-fueled joyrides balancing atop, for no sensible reason, Frag’s battleship-sized beater Pontiac as he’d fishtail and rage through a dirt-clodded, unpaved construction site. Why? Because Frag was bigger than all that, larger than anything they could design and he could build, that he orchestrated brick by brick with his callused hands and college boy’s dog-like, tongue-hanging dragging labor. Real work is only what you do with your hands, where your bring paper and promise to life. To flight.

Power control is key to airspeed.

Not so labor-coarse are the hands today resting atop the thrust levers harnessing a straining draft horse team bucking fifty-thousand pounds of jet thrust. Stand hard on the brakes and haw the team to roaring life, needing to know, to feel it, read it, personally. Sure, there are a thousand lines of computer code flowing through electric sinews monitoring the ungodly torrent of fire and fuel, metal and power slung under wide swept sleek wings howling against the brakes but no matter: journeyman Frag knows it ain’t right till it feels right, looks true as a plumb line to a tradesman’s eye for “right,” for launching more than a towering design, yet no more than that in the play out of someone else’s grand plan in the sky.

To my right College Boy, jet edition, eyes me warily as I hold it all in my tight-handed, set jaw grasp, squint-eyeing what we’ve built to be sure, to know it’s true. Hah. Stand on the roof, college boy, and hang on. We’re going to fly, make it soar, like never before or again.

Live it, fly it with me: cvr w white borderThese 25 short essays in the best tradition of JetHead put YOU in the cockpit and at the controls of the jet.

Some you’ve read here, many have yet to appear and the last essay, unpublished and several years in the writing,  I consider to be my best writing effort yet.

Own a piece of JetHead, from Amazon Books and also on Kindle.

amazon order button

Air Travel: 3 Simple Ways to Make Your Summer Flights Easy

Posted in airline, airline cartoon, airline industry, airline passenger, airline pilot, airline pilot blog, airliner, airlines, airport, flight, flight attendant, flight crew, jet flight with tags , , , , , , , , , , , , on June 9, 2014 by Chris Manno

image

Summer time air travel can be stressful, but there are practical and simple things you can do to make your trip easier. Here are my top 3 simple ways to make your summer air travel as efficient and low stress as possible.

1. Information: install the smart phone apps for the travel services that apply to your trip (airline, hotel, rental car) and take a few minutes before your trip to set them up with “push” notifications so you will automatically be notified of gate changes, delays and even rebooking. If you’re notified of a delay by the airline, having a hotel, rental car or resort app installed will put you in touch with those important services quickly and easily. Your pharmacy’s smart phone prescription app can speed you through the refill process in a distant city, or transfer prescriptions in many cases.

 

aa app 1

Many airline apps let you rebook instantly, avoiding long waits in a customer service line, and can outline your options quickly without you having to navigate a website. Best of all, you can beat the rush when re-booking is necessary. On some airlines–American Airlines is one–you can use the airline’s app and website in flight through the on-board WIFI for free.

On taxi in, when you’re cleared to use your cell phone, you will be notified–if you authorized “push” notifications–of your next gate accurately if you’re connecting, or your baggage claim if your travel is complete. The gate agents pull that info 10-15 minutes before your gate arrival, and we print it out in flight 30-40 minutes prior to landing. But your “push” notifications will be more timely and accurate than the other two sources.

image

You can delete any travel apps you don’t need later, but while you’re on the move, there’s no quicker or more accurate way to get the answers you need to your immediate travel needs. Install the apps, know how they work, and use them to stay ahead of the crowd–especially in case of cancellations, delays or gate changes.

2. Survival gear. First, count on none of your basic needs being met: food, water, shelter. Provide all three yourself. First, food: if you can’t buy something in the terminal to take along–and often you can’t–better have whatever compact, long shelf life calories source you can pack: power bars, granola bars–whatever you prefer that will stave off hunger.

Ditto for water: you “can” get water on board, but the question is when, and sometimes, how–are you in the back and they’re starting the beverage service from the front? Or vice versa? Or is it too turbulent to safely move about the cabin for passengers or crew? Just have a liter of bottled water handy per person, then don’t worry about it.

Finally, “shelter:” dress for the trip, not the destination. That resort-wear will not keep you warm in a chilly cabin, particularly on long flights. And here’s a crew secret: your flight attendants are active, working, and blanketed in layers of polyester. Who do you think calls us to ask for changes in the cabin temp? If they’re melting under the uniform layers, you’re going to wish you weren’t in shorts and a tank top, because we’re more likely to hear “cool it down” than “warm it up” from our working crew in back.

cabin freeze

3. Consolidate: all vitals and valuables in one hand-carried, locked bag. Medication, documents and here’s the big one–valuables, like your watch, wallet and any jewelry MUST go into this one locked bag BEFORE security. Why would you ever–and I see this all the time–put your wallet, watch, cell phone and other valuables into an open container on an unmonitored conveyer belt? Why not consolidate them all and then after you’ve successfully passed through security screening, retrieve your items from your locked bag?

security-den1

And locked is the key: if you’re pulled aside for additional screening, do you want all of your valuables laying out in the open, outside your reach and often, out of your sight? Even if that one locked bag requires extra screening, the lock ensures it will only be searched in your presence.

The final part of “consolidate” applies to your personal belongings: do NOT disperse your items all over your seat area. It’s a sure way to leave an item on a plane, a fact that is borne out by the number of passports, wallets, personal entertainment devices, tablets, keys and phones that turn up on overnight cleaning of aircraft. If you leave valuables, much less valuable documents like a passport, in the seat back pocket or anywhere else, you’ll likely never see them again. And speaking of “seeing” them, the normal climbs, descents, banking and on landing, braking will cause whatever loose items you may leave or drop on the floor to end up rows away. Even if you check your immediate area before deplaning, some items might have vanished. So don’t scatter your belongings about! Return items to your hand carried bag immediately after use or when not in use.

Face it–air travel is stressful as it is, but a lot of stress can be alleviated by these three steps. Information is king when you’re departing, trying to connect, or are changing plans on the fly due to delays or cancellations. Get the apps, set them up, and use them. Stay hydrated, fed, and warm to ease the physical stress. And finally, move smart: consolidate your valuables and do not let your personal items become strewn about your seating or waiting areas on board or in the terminal. Inflight forces will help them slide away, or if you leave them inadvertently, chances are slim that you’ll ever recover those items.

Follow these simple steps–and have a good flight and a great vacation.

_____________________________________________________________________________

Impress your flight crew with your airline insider knowledge–

Get your copy of the JetHead Cartoon collection:


cover lined

72 pages of original, insider cartoons!

To order, click here.

 

 

Sent from my iPad mini

The Epistle oF light.

Posted in air travel, airline, airline pilot, airline pilot blog, jet flight, night with tags , , , , , , , , , , on July 30, 2013 by Chris Manno

orion

The Orion Nebula contains a very young open cluster, known as the Trapezium due to the asterism of its primary four stars. Two of these can be resolved into their component binary systems on nights with good seeing, giving a total of six stars.

The basic framework for the moving target that is flight comprises an architecture of anchors and change: weights dictate speeds which prescribe duration and altitude. The wooden stake in the ground, sure as the tenuous GPS alignment reluctantly tolerating the gusty wind bucking the 40 foot tall rudder assembly, will be ancient history as soon as we move. But to know where we’re going, we have to know where we started from.

The stars of the Trapezium, along with many other stars, are still in their early years. The Trapezium may be a component of the much larger Orion Nebula Cluster, an association of about 2,000 stars within a diameter of 20 light years. Two million years ago this cluster may have been the home of the runaway stars AE Aurigae, 53 Arietis, and Mu Columbae, which are currently moving away from the nebula at velocities greater than 100 km/s.

737 night

And drawn as moths to the flame, pairs and singles, Noah’s children march aboard, halfway to somewhere, their presence now a light reflected forward, as meaningless in the here-and-now as the two-by-two was in the pouring rain, boarding the ark: it’s all about the retelling later.

A nebula is an interstellar cloud in outer space that is made up of dust, hydrogen and helium gas, and plasma. It is formed when portions of the interstellar medium collapse and clump together due to the gravitational attraction of the particles that comprise them. The gravitational forces between particles is directly proportional to the their masses, remember?

“Now” is a moving target, mortgaged by “then,” which in the preflight cockpit is more about “there:” the air nautical miles divided by pounds of fuel burned per each. The symphony of electrons conjures an opus of transformation: if everyone plays his part, there will be a smooth harmony of fire, speed and distance, underscored by dollars transferred and spent, buoying steel and fuel, blood and bone, suspended across the night sky like the fiery tail of a comet from here to there.

When a star burns through the last of its fuel, it may find itself collapsing. For smaller stars, up to about three times the sun’s mass, the new core will be a neutron star or a white dwarf. But when a larger star collapses, it continues to fall in on itself to create a stellar black hole.

It’s always the “after” from which meaning is made. For the ark, that’s arrival. For the pilots, that’s enroute, the record inscribed across the night sky, 500 degree exhaust gas boiling away at -55 C ice crystaline air, backlit by the moonlight as a spider web across the star-flung dome. Keep the fires burning.

Black holes formed by the collapse of individual stars are (relatively) small, but incredibly dense. Such an object packs three times or more the mass of the sun into a city-sized range. This leads to a crazy amount of gravitational force pulling on objects around it. Black holes consume the dust and gas from the galaxy around them, growing in size.

And for those left behind, like those yet ahead, the unseen passage is one of either anticipation or regret, of bidding welcome or goodbye, of time spent or lost. You can’t not feel the diminishing weight of both, lighter the farther and higher you go. No hands hold you, just wings and lift, time and tide, fire and ice in balance. Passage.

Orion’s light is either a promise given or a wish fulfilled, depending on where you see it and when. At light speed, the trapezoid assigned to the mythology, the murky nebulae burning within, left home in the time of Alexander the Great, overtaking you at 41,000 feet a couple millennium later. Either way it’s a lie–a now from then, seen light years away; then as if now.

al great

Just like your flight: you’ve crammed a million footsteps into the counting of minutes rather than lifetimes, footless, seven miles high, an ark sailing on a rolling tide of time and place, borne of fire, trust, hope, and light.

For those in the back, the metal ark is but conveyance. For you, more an arc inscribed across the night, more than passage but less than permanence. Like the silent, obedient constellation, the gas blue light won’t matter until it’s examined in retrospect. You live in the passage, grant the flight its own universal time and space, its million shards of where and when and ultimately, why. But it’s never about “there,” for you. Only leaving there, and flight across darkness: night, the shadow of life, then home, the nexus oF light.

cockpit night

How do YOU land at San Francisco International Airport?

Posted in air travel, airline, airline pilot, airline pilot blog, airliner, airport, flight crew, jet flight with tags , , , , on July 9, 2013 by Chris Manno

sfo 2

Here’s how you land at San Francisco International. First, the view over your left shoulder as you cruise “downwind” for your arrival into San Francisco International. You’ve arrived from the Pacific side of the airport, so you can plan (they’ve probably advised you already) on landing on runway 28L, which is the runway you’re paralleling on downwind. Yes, there are 2 runways that you are paralleling, but the logical one for you is the one on the left. Here’s what the airport diagram looks like, with an arrow pointing to 28 Left:

sfo 10-9a

Let’s talk about all of the runways at San Francisco International (SFO), because their are simultaneous operations on all four runways, so your landing runway is not operating independently or simply–nor are you as a pilot landing at SFO. Those two runways intersecting your landing runway will be launching aircraft out of SFO even as you are landing: yes, they’re crossing your runway–and you theirs–simultaneously. That means the SFO tower controllers are managing a complex ballet of speeds, timing and clearances. They’re doing a precise, excellent job, but a lot will depend on you: you must fly the assigned airspeed exactly in order for all of the moving parts in this synchronic mix of flying metal to mesh smoothly.

sfo 1a

But wait, there’s more: runways 28 left and Right are too close together. Built built on a man-made pier, the pair are crammed closely together, closer than the standard, required spacing for parallel runways. Why does that matter? Well, because on final, aircraft approaching the runways at the same time will fly closer than the normal lateral separation required by the FAA standard:

28 parallel

Not taken with a telephoto lens. Rather, that’s a jet landing on 28L, taken from the cabin of one landing on 28R.  Lateral separation is minimal–by virtue of a waiver of the standard separation that the FAA granted to SFO–so there are more restrictions on you, the pilot. First, you must not overtake the other aircraft. That’s because the trailing aircraft is charged with maintaining visual separation, because the leading aircraft can’t really see the trailing aircraft. If you overtake him, there will be a period where neither can maintain separation visually. So airspeed control must be exact, usually assigned by tower–to ensure separation from another part of the moving mechanism: aircraft are taking off on the intersecting runways, shooting the gap between your landing aircraft (and the parallel partner above) and the ones who landed before you.

Here’s the instrument approach for your landing runway–and there’s a complication today with that, too.

28L ILS

Today, the radio glidepath, or “Glideslope” (GS) is NOTAMed (NOTice to AirMen) out–meaning you will not have that descent guidance available on your display, so, you’ll be expected then to manually crosscheck the “step down” altitudes (7000, 6000, 5000, 4000, 3100, 1800, and 213) against the distance marked on this chart. All while flying the specified speed assigned by tower, which you must integrate with the maximum speeds allowed by the flap configuration required for the approach and landing.

bug eye cockpit

Sounding too complicated to manage? Well, it’s not. In fact, it’s routine: very often, you’ll encounter intersecting runway operations (Chicago O’Hare comes to mind, and those controllers do a fantastic job of choreographing that ballet); many airports have reduced, FAA-waived runway separation (hello, Minneapolis), and at any given time, airports around the nation report various instrument landing system components temporarily out of service .

The glideslope being out wasn’t a surprise, either: you were advised by NOTAM (see above) before you even took off on this leg of the condition of the equipment and on your approach briefing (probably done within the last hour) you reviewed the requirements, procedures and complication with the other pilot(s) in the cockpit prior to starting the approach.  And if you’re savvy,  just in case, you briefed the approach to the parallel runway as well. That’s because at any point, due to traffic load or other factors, SFO tower can swap you to the other runway–just like that but again, that’s routine in the airline biz. Expect it, pre-brief it, deal with it.

fms crz

Which means reprogramming the correct approach points in the Flight Management System (FMS) on the fly (pun intended) and verify each point, then set up the correct intercept to a forward waypoint in the FMS. All the while, don’t forget our friend out there–it’s your responsibility to stay clear–

28 parallel

Fly the speed assigned to the waypoint assigned, maintain the altitude minimums according to the above chart by comparison with your distance from the field and . . . configure for landing, while observing the flap speed limitations of your jet.

Here’s where you get to do your own balancing act within the swirling gearbox of approaches, landings, takeoffs and climbouts: if tower assigns you to fly a speed of 200 to “DUYET,” (see approach diagram above), that means you are limited to flaps 15 (have to be below 190 for more). But DUYET is at 1,800 feet and your airline has a “stabilized approach” policy below 1,000 feet: must be in final landing configuration and stabilized airspeed (neither increasing or decreasing) with a stable power setting (neither spooling up or down) from 1,000 feet to touchdown.

Power control is key to airspeed.

Power control is key to airspeed.

From 1,800 at DUYET to 1,000 feet, at a standard descent rate of around 800-900 feet per minute, you’ll have about 60 seconds, maybe less depending on tailwinds, to decelerate about 50 knots, then re-stablize the speed and power, and extend the flaps from 15 to 25 to 30 or 40 for landing. If not, mandatory go-around–meaning, initiate a climb following the “Missed Approach” instructions on the chart above. That’s also included in your approach briefing, remember which one–left or right–that you’re doing because remember, there are aircraft launching as well, mixing into the airspace. Then either repeat the approach (also very routine) or divert.

Stabilized? Good–now the only thing YOU must do is monitor descent rate, speed and alignment. That’s why a stabilized approach is vital: being set in descent rate and airspeed and power setting frees you to simply fly to a safe landing. After an approach that you now know is anything but simple. Happy landings.

737 landing crop

Follow

Get every new post delivered to your Inbox.

Join 9,465 other followers

%d bloggers like this: