Archive for the fear of flying Category

The REAL Captain’s Guide: How To Fly That Crap Weather Approach.

Posted in air travel, airline, airline passenger, airline pilot, airline pilot blog, airline safety, fear of flying, flight crew with tags , , , , , , on September 30, 2016 by Chris Manno


First, let’s define “real” captain. I don’t mean “real” in the sense of physical, tangible, bad-layover-clothes, mouth-breathing captain, although I’ve been one at a major airline for 25 years and counting. You’re “real” as a captain on Day One when you’re turned loose with the rating.

What I mean by “real” is as in, “get real.” That’s because we know there are several things you face as captain with the dogshit weather approach. First, there’s what you’re told. Second, there’s what you know. Finally, there’s where the reality plays out: from the final approach fix inbound at 180 knots across the ground. There’s stuff you need to do to be ready for that.

The first item, “what you’re told,” includes the OpSpec that allows you to do what you’re about to do: fly a big jet with a lot of folks–including your crew–into minimally adequate weather for landing. OpSpec includes a minimalist element (what’s the least we can send you into the most challenging weather?) that allows airlines to earn revenue for what you’re about to do.

air applause anger management

What you’re told also includes the prevailing weather at the time they told you, which is nowhere near the time at which you’ll actually fly the approach. If I sound like a captain who’s had that detail bite him in the ass–it’s because I am.

So, here’s the BTDT viewpoint that goes beyond the classroom and the manuals. Not interested in stuff beyond the books? Don’t need the BTDT captain viewpoint? Please close this blog page now. No harm, no foul. Best of luck.

Okay, still here? The others gone? Good.


First, your approach starts in the chocks before pushback. No, I don’t mean “be the dork who starts stressing or worse, briefs the approach before engine start.” Rather, I mean be the captain the FO can rely on as soon as you sit down. Stay the hell out of his way as he (or she)  works. Respect–but check–the setup of the cockpit for takeoff. You ain’t perfect, so don’t expect your FO to be, and let him (or her) know YOU can be counted on as a team member to be sure you both do well from the first checklist. That’s what you want later: a collaborative, respectful environment where your FO knows you’re relying on each other step by step. The FO needs to be looking for and free to point out your screwups.

Second, “what you’re told” versus what you know can be tricky. Weather forecast versus delays you’ve seen versus altitude restrictions and the list goes on: variables, unreliables, despite “what you’ve been told.” But what everyone knows is this: fuel equals time. When that sixth sense picks at the back of your brain saying we might could use more fuel–you really do so get it before release. If you’re wrong (trust me, you won’t be–the only time you can have too much fuel is when you’re on fire) then you land with more time options. But if you’re at minimum fuel you’ll have to tear the seat cushion out of your ass after landing because your butt cheeks ate it up like horse’s lips do while you stressed about weather delays.


Finally, downwind. If you’re flying, relax: you’re not that asshole captain showing how it’s done (okay, you really are) but rather, you’re doing what you know to your core you’re damn good at. So, be humble, be quiet, be methodical, procedurally correct and do exactly what’s called for. Show your FO how you want the approach flown.

FO flying? Even better: relax, back up everything done, think ahead of the jet and while you do, let the FO do the flying exactly as it’s supposed to be done. Getting slightly off track? Guide back to best practices with suggestions, positive affirmations and last resort–LAST RESORT–directive, which sounds like “Let’s go ahead and ____” or “I’m not comfortable with ____.”

Remember, if what you’re told hours ago before takeoff matches what you encounter at the final approach fix, that’s a coincidence. You fly “real” based on what you know, which includes every experience and subsequent intuition derived therefrom–apologize to no one, get the fuel you need and decide for yourself if OpSpec minimums are adequate to meet the challenge facing you in realtime. We don’t fly on paper, on a spreadsheet, or on a chart of minimums page. Remember the horse’s lips/seat cushion metaphors: get fuel, think ahead, respect your FO, believe what you know (school of hard knocks) and fly smart, conservative and REAL.

Then, from Final Approach Fix to touchdown or go-around, you’re smart, confident, safe, and real. No one can ask you for more and as captain, you cannot do anything less, nor accept anything but the best you can do, by leading, coaching and most of all, being real.

Fly safe, compadres.


Air Travel Mythology: The “Aborted Landing”

Posted in air travel, airline cartoon, airline industry, airline passenger, airline pilot blog, airline safety, airliner, fear of flying, flight crew, jet flight with tags , , , , , , on February 17, 2015 by Chris Manno

737 landing crop

Air a Travel Mythology: The “Aborted Landing”

In social settings, I never bring up the fact that I’ve been an airline pilot at a major carrier since 1985. Because when I do, the mythology springs forth: tales of “harrowing” flights, near disasters, plus lost luggage (not my department anyway).

The flight myth most typical is, in passenger-speak, something like this: “We were about two feet off the ground when the pilot ‘gunned it’ and we shot straight up.” Gunned it?

Ah yes: the go-around, as we call it. We don’t call it “aborted landing” and in fact, until we get on the runway it’s not a landing anyway. Even after touchdown, the only option other than stopping is a “rejected landing,” which is a methodical procedure to get back into the air safely.

The main point is this: all of these options are planned for, procedurally set out and practiced, and in a nutshell–not a big deal.


Here are the facts, step by step, of a missed approach.

First, the urban legend needs revision. From an airline pilot standpoint–and this is the airline philosophy, in writing–a missed approach is considered a successful approach. In other words, landing is not mandatory for a successful approach. In fact, unless all of the many restrictions upon which a landing is predicated are met, a missed approach is the desired outcome.

There are a number of reasons why a missed approach may be required and the most common reason is not the one most people think of: weather. Rather, is the more mundane issue of spacing.

More specifically, that “spacing” refers to the distance between aircraft landing and ironically, this is typically a good weather problem. In bad weather, aircraft are well-spaced by radar and further, speed is typically assigned by the air traffic controllers. On a clear day, aircraft are allowed to “see and avoid” and thus are not spaced as far apart, nor is the speed as rigidly assigned.

So, now and then one aircraft on final approach may not have enough space behind another aircraft just touching down, which could mean the first aircraft might not be off the runway before the following aircraft would touch down. That’s a no-fault situation: maybe the first aircraft needed to slow down earlier than normal, or, as at DFW today, due to construction some runway exits may be closed, requiring a longer landing rollout.

BA 747

Or, often enough, an aircraft is cleared for takeoff as you approach and they might take longer than expected to roll. That’s routine and actually, it’s their runway once they’re cleared for takeoff. So, we may need to go-around.

The pilots in the second aircraft can see the spacing problem develop and there may be a few things that can help: you could slow to your final approach speed–but I also consider the plane behind ours and how that affects his spacing on our aircraft.

My rule of thumb is usually this: if the aircraft ahead touches down or starts takeoff roll and we’re still at 500 feet or higher, it’ll probably work out. Less? We’ll likely go-around. When we do, the process will be routine and simply, methodically by the book: smoothly add power, arrest the descent, bring up the landing flaps and their drag, retract the gear and smoothly climb to the assigned missed approach altitude and following the prescribed course.

No big deal from the cockpit, but it takes you by surprise in the cabin where you can’t see the situation developing. When power is added and the nose pitches up, the sensation in back is much more dramatic, particularly behind the wings and especially near the tail (ask any flight attendant) where the swing is more pronounced.

Sometimes the power can be overly dramatic: we have a power setting designed for a go-around, but it’s predicated on a last second escape from the lowest descent altitude on the approach–50 feet above the runway, in the Boeing 737-800 I fly. But seldom is the missed approach executed at that rock-bottom minimum, so that much power isn’t really necessary.



Trouble is, some of the older jets like the MD-80 have autothrottles that know only to set the maximum setting if the go-around power toggle is activated. That causes a dramatic pitch up that may feel, in the words of the immortal Dr. Dole at USC Flight Safety and Accident Investigation Center, that you’re “climbing like a stripedy-ass ape.” Startling to say the least and why many pilots of those older aircraft disengage the autothrottles and manually set power on a go-around from a higher altitude.

Newer jets like the Boeing I fly today have two go-around power settings available with the autothrottles engaged, one with the maximum power response, one with a reduced, more comfortable setting.

A go-around from an approach minimum altitude is the exact same procedure, only with the full power setting, which will make the maneuver more pronounced but nonetheless, routine. That’s necessary for safety: we want maximum terrain clearance with no delay, so the exact same procedure is followed, just more aggressively due to the full computed thrust used.


When I see the need for a go-around developing, the first thing I do is talk to the other pilot, getting us both ready to execute the litany of steps if need be. If we’re down to the approach minimums, there’s really nothing to discuss: we execute the standard go-around maneuver.

Traffic problems and spacing are the usual reasons for a go-around, but there may be the occasional go-around due to weather minimums. There’s no “gunning it” or fire-walling the throttles like in the Hollywood depictions, just a methodical and prompt setting of the required engine thrust and an arrested descent, then climb.

In either case, don’t expect to hear much from me on the PA, because in a go-around both pilots need to focus on flying: the altitude, the procedural track, the aircraft configuration and speed. If we’re going around due to weather minimums, we’ll also likely be setting up the navigation and securing the clearances to divert; if not, we need to get re-sequenced back into the landing pattern. None of that on a two man crew works well solo, which is what a PA would require.

So I’ll get to it when and if I can. If not, explain all this to the guy next to you, and relax. Because now you know a go-around is just routine.

More questions about air travel and your flight? Here are the answers:

Cover Airline Book 1

 To get your copy,  just click here, or search



Flying an Airliner After an Engine Failure on Takeoff

Posted in air travel, airline industry, airline passenger, airline pilot, airline pilot blog, airline safety, airliner, airliner take off, airlines, fear of flying, flight crew, flight training, GE 235, jet flight, passenger, TransAsia crash with tags , , , , , , , , on February 7, 2015 by Chris Manno

Flying an Airliner After an Engine Failure on Takeoff

I get asked this question a lot as an airline captain: can an airliner survive an engine failure on takeoff? The answer is, yes and no.

Here’s the “yes” part of that: every multi-engine airliner in service today is designed and certified to continue a takeoff after an engine failure and fly on one engine, provided that the performance limitations are not exceeded and the correct single engine procedures are followed exactly.

Which brings us to the “no” part: if performance and control limitations are exceeded, or incorrect remedial procedures applied, chances of a successful single-engine takeoff and climb are slim at best.

Here’s a close look at the variables. First, the performance limits. Can an airliner execute a normal passenger flight with just one engine? From brake release? Of course not. What it can do is continue a takeoff if an engine fails with one inflexible limit: you must have achieved the correct minimum speed prior to the engine failure in order to successfully continue the take-off with only the remaining engine(s).

That speed is called Critical Engine Failure Speed (CEFS). To be exact, CEFS is the minimum speed you must have attained with all engines in order to successfully accelerate to takeoff speed after an engine failure, and then within the runway remaining, lift off and and cross the departure end of the runway at an height of at least 35 feet.


Stopping with a failed engine is a whole different discussion, to be addressed in a future blog. For now, consider the engine failure and the takeoff being continued. If we have met or exceeded the CEFS, we will continue the takeoff which is critical to down-line obstacle clearance.

The go-no go speed is called “V-1,” which is simply “Velocity 1,” the decision speed on takeoff roll: if you’ve attained V-1, you’re able to fly. If you’re at V-1, unless you’ve started braking, you’re committed to flight because you may not be able to stop within the remaining runway.

For me, life becomes easier at V-1: we can, and will, fly. That’s what the jet (and I) was intended to do–the thought of bringing tons of hurtling metal and fuel to a stop in the remaining runway is not appealing to me. In fact, I need less aircraft systems to fly than I do to stop, including no blown tires, operative anti-skid and spoilers. In that split second abort decision, how can I be sure I haven’t lost an electrical system that would inactivate the anti-skid, or a hydraulic system that could affect the spoilers, or a blown tire that would take out 25% of my braking–and maybe cause a wheel well fire?


The answer is, I can’t be sure, but I can fly with every one of those components inoperative, and to a pilot, flying a sick jet is preferable to wrestling a sick multi-ton high speed tricycle to a stop. So we fly, if we can do that safely.

My discussion from here pertains to the Boeing 737-890 aircraft I fly, but I would add that all airliners are certified to this same performance standard. Procedures vary, but the single engine performance standards are similar.

So in the event of an engine failure beyond CEFS, at rotate speed we will rotate normally and begin our obstacle clearance climb. This is where crew action is critical.

The first indication of an engine failure in the cockpit will typically be a yawing motion due to the imbalance of thrust between engines. Whether that occurs on the runway or, more likely, in the air, the response is the same: add as much rudder as is required to slew the nose back to normal flight. That’s critical for two reasons. First, the runway clear zone (the area over which you must fly) extends forward from the runway centerline. If you curve laterally away from the centerline, you lose the obstacle clearance protection of the runway clear zone.

Second, the correct amount of rudder eliminates the need for aileron use, which comes at a price: if enough aileron is input, wing spoilers will deploy, inducing drag. This is crucial because drag limits the climb capability which is a defined gradient required to attain obstacle clearance altitude.


So here’s the “yes” part again: if the aircraft weight is within prescribed limits, if the correct speed is maintained and the specified climb gradient is flown, and the lateral ground track of protected airspace is tracked, then yes, the takeoff and climb-out is certified to be successful.

Do we, in the event of an engine failure, add power on the remaining engine? Generally, no. Why not? First, because the calculated takeoff power setting is designed to be sufficient to allow a single engine takeoff and climb after an engine failure. Yes, more thrust is available and if you need it, you use it. Our CFM-56 engines are electronically controlled to protect against over-boost damage, but here’s a pilot thought: if the climb is proceeding correctly, why introduce more adverse yaw, and why strain the remaining engine?


Now, crew response. The person noticing the engine failure is normally (but not always) the pilot flying who feels and counters the yaw. That person, or often both pilots, call out what they see: “Engine failure, number __,” or “engine fire, number ____.”

Then, this and only this: maintain climb speed (and thereby climb gradient) and ground track. Let’s backtrack a bit. Before each takeoff, on taxi out I verbally review three altitudes with my First Officer: the field elevation, the engine out altitude, and the minimum safe altitude for that airport. And that’s our focus in the event of an engine failure: climb at the correct speed on the clear zone path to the single engine climb altitude.

A wise old CRM (Cockpit Resource Management) instructor used to tell all the pilots at my airline as we cycled through for our annual recurrent flight training and evaluations the same very shrewd piece of advice for this and any other flying emergency. He was a crusty, retired Air Force fighter jock who’d hammer this home: “Whatever happens, before you react, you take a deep breath and say to yourself, can you believe this sonofabitch is still flying?

Even after that, we don’t react–we respond appropriately. That is, between the two of us, we agree on what we have, and that can only be three things: engine failure, engine fire/catastrophic damage, and engine overheat. Identifying the problem and the engine is important, because the corrective procedures differ.

So in the minute or so that it takes to climb to our pre-briefed engine out altitude, we’re both analyzing exactly what happened, and which checklist we will bring out to accomplish step be step.


What if the First Officer, rather than me, is flying when the failure occurs? From my point of view, and I’m coming up on 24 years as captain, I say so much the better: all of our F/Os know exactly what to do and moreover, they’re flying, they have the feel of the jet and the corrections in–why throw a control change into the mix and try to handle it cold?

As an added bonus, as the pilot monitoring the pilot flying, I’m downloaded of the physical stick and rudder challenges which are significant single engine. I can concentrate on analysis, procedures, radio calls and clearances because “Bubba,” as they referred to F/Os in flight engineer school, knows what he’s doing.

So here we go: what do we have? Simple flameout? Do we have RPM? If it’s not turning, there’s damage. Temperature range? Fire? Oil pressure? Only when we both concur will I, being the pilot not hands-on flying, pull out the checklist and read it step by step as I accomplish each with the F/Os concurrence at each step.

Here’s where discipline and crew coordination is key: NOBODY is going to start flipping switches on their own and whatever is done will be done only as I read the procedure. The best way to mangle any emergency is for anyone to go solo and start operating off script.

In every engine failure scenario, there comes a point in the corrective procedure where a throttle must be closed and a fuel lever shut off, possibly a fire switch pulled. The throttle of course reduces the thrust, the fuel lever cuts off the fuel supply to the engine (it’s going to flame out) and the fire switch shuts off fuel at the tank and the wing spar (in case the engine fuel shutoff valve is damaged by fire or explosion) as well as hydraulic fluid, pneumatic bleed and electrical power.


These actions are drastic and with only one engine operating, they must never be done independently, unilaterally or without a double-check and concurrence. They are also most advisedly done only after level at the single engine altitude with obstacle clearance assured.

Here’s how that plays out in the cockpit, verbally and physically:

Me, reading the critical steps: Fuel Lever, affected engine (confirm)

[pause] I touch the correct fuel lever, F/O concurs; F/O guards the good engine fuel lever with his hand.

Me: Cutoff. [I perform the action] It is cutoff.

Then we go to the next step in the checklist, me reading, pausing for concurrence and confirmation. Bubba is focused on aircraft control, altitude and airspeed, validating each checklist step I read before and as it’s taken. I’m focused on the procedures, plus backing up Bubba’s flying.

If I were flying when the failure occurred, same process, just reversed roles. Each and every step in each appropriate checklist will be accomplished with crew coordination till we are ready to return and land safely.

The easiest engine failure to handle is a simple failure or “flameout.” You may try a restart under some circumstances, or you might not take the time and instead, just get the jet ready to land. The most difficult failure is the fire and severe damage situation, but it’s handled the same regardless: carefully, step by step with collaboration and concurrence.

Never singlehandedly or without concurrence. Because the deadly reality of two engine aircraft is this: if you apply any of the required procedures to the wrong engine, the only engine sustaining your flight, the results will be disastrous.

I’ve had to fly four actual single engine landings in MD-80 jets for various reasons, none so far in the rugged, reliable 737. We practice engine fires and failures every nine months in our recurrent simulator training, handling multiple scenarios each four hour session. The key to a successful single engine incident is procedural integrity, crew integration and communication, controlled pacing, and standard operating procedures followed to the letter.

In the end, a successful engine failure landing comes down to coordination, discipline, adherence to standard procedures and as my old fighter pilot buddy used to say, taking that second or two to collect your wits and say, “Can you believe this sonofabitch is still flying?”

For those who don’t adhere to all of the above, it won’t be flying for long.

Help for Fearful Flyers

Posted in air travel, airline cartoon, airline delays, airline passenger, airline pilot, airline pilot blog, airline ticket prices, airlines, airport, airport security, fear of flying, flight crew, jet, mile high club, passenger, pilot, travel with tags , , , , , , , , , , , , , on January 31, 2015 by Chris Manno

Cover Airline Book 1Here’s a chapter from my brand new book, “Air Travel and The Death of Civility: A Field Manual & Survival Guide,”  crammed full of shortcuts, insider info and little-known techniques to make your air travel as stress-free and smooth as possible.

Available now from Just click on the title link above, or search on Amazon.

Help for Fearful Flyers

Please don’t feel alone because you’re not: many passengers have some level of nervousness about flying. It’s just another version of the anxiety many feel at the dentist, the emergency room; virtually anywhere new, unfamiliar, and potentially uncomfortable. In fact, people and businesses actually cultivate and market exactly this type of anxiety at theme parks with roller coasters, haunted houses, and terrifying thrill rides. Some people actually crave the feeling.

What a nervous flyer feels is perfectly normal and need not eliminate the option of flying. That fact alone is reassuring, especially in the case of groups or couples who limit their travel options due to the reluctance of one individual to fly. Often, a large part of a passenger’s unease is an understandable fear of the unknown, which is essentially just unfamiliarity with a strange new environment. So let’s fill in some of those blanks in your flying knowledge and then, we’ll discuss techniques to manage your unease.

Land in crud

First, let’s consider the aircraft and its durable, ingenious engineering. The designers of our jet have refined their process of building and manufacturing our airliner through decades of progressively better models with ever-improving materials and techniques.

The aircraft was built to rigorous standards of strength and durability far beyond what we will ever encounter in flight. To be specific, the FAA certification standard required the aircraft to demonstrate that it could withstand forces in turbulence well beyond that which has ever been recorded, plus an additional margin, with complete airframe integrity. That means that regardless of turbulence, there will be no airframe damage or structural deformity, we’ll be still flying just fine. Basically, this aircraft is not coming apart in any conditions we encounter in flight. You don’t worry about your car running over a bump at high speed, over railroad tracks, or even a curb–but it’s not built to anywhere near the strength standard of our jet.

bumpy twitter

You’ll actually notice less turbulence in flight these days, due to a couple of assets we use. First, radar technology has advanced not only in display resolution, but also in a predictive capability: now, our digital radar and on-board computers are sifting through thousands of bits of digital data gathered by radar and other systems, giving us an accurate prediction of where turbulence may occur. Our radar is integrated with the Global Positioning Satellite system and knows where it is at all times, allowing it to separate terrain features like mountains from weather echoes. The radar aims itself correctly and has an accurate, interactive display of over 300 miles ahead of the aircraft. The radar has a “pop-up” feature that allows it to show on our displays even if it’s not selected, when it finds a weather problem many miles away that we need to know about.

Add to that the ground-based computer analyses that are charting patterns of turbulence, which are then automatically up-linked to us in flight, plus the exchange of real-time information between pilots and air traffic controllers and the end result is less turbulence encounters, and lighter turbulence when encountered. There are days when rides just aren’t completely smooth and we’ll encounter some bumps. But rest assured, we’re working our way through the sky in the smoothest flight path possible.

raining luggage0001

Visualize the air we fly in for the fluid that it is, with currents, eddies, flows, and even the wakes of other aircraft also aloft. Crossing a jet’s wake is much like crossing that of a boat: rumbles, some bumping, then we’re past the wake. Atmospheric eddies and currents can cause similar short periods of bumpiness, or even just a mostly choppy sea of blue. If that persists, we’ll search for a smoother altitude–just give us a few minutes to coordinate a clearance from air traffic control.

Mountains cause the atmospheric equivalent of river rapids in the airflow, even at altitude, because orographic features like ranges and peaks act like rocks in a stream, causing a rougher ride. That’s typical of a flight path across the Rockies: some bumpiness is not unusual. But you can rest assured that at our flight speed, we’ll pass through the area without delay.

In US airspace, airlines and Air Traffic Control pool weather information to share among all flights, and one designated FAA facility manages traffic and routes around areas of severe weather. With all of these assets working for us every flight, we don’t get taken by surprise by weather.

buck twitter

That type of coordination that shares weather and route information is emblematic of the entire US aviation system, which has had a seventy-year learning curve of development, testing, and refining that has resulted in a strong, reliable oversight and infrastructure for commercial aviation, including

the Federal Aviation Administration, Department of Transportation, and the National Transportation Safety Board. All three in combination provide experienced and comprehensive oversight that makes flying the safest mode of transportation you could choose.

Another highly-developed airline support system monitors our jet in flight. Our technical operations center monitors hundreds of bits of data sent in a non-stop, automated stream from our jet in flight. In flight, I’ve had a message from our round-the-clock tech center print out that said, “Can you verify the vibration on the left engine? It’s reading a little high down here.” The engines alone transmit a huge stream of telemetry to our tech center, and that data allows long-range trend diagnosis that has all but eliminated in-flight engine failure on the Boeing jets I fly. Trend data and years of diagnostic experience have allowed Boeing, our

emo support 1

tech staff, and our maintenance center to keep aircraft systems in peak operating forms.

From years of firsthand experience, I can say Boeing jets in particular are finely engineered, rugged and reliable American-made jets, and that’s the main reason I fly them. Thousands of hours in Boeing cockpits have given me every confidence in the strength, power, and versatility of these jets which are capable of handling anything we could encounter in flight.

I’m fairly typical of the pilots you’ll find in command of your flight, in my thirtieth year with my airline, my twenty-fourth as captain. I was an Air Force pilot before that, and like my colleagues on the flight deck, I have the singular goal of flying safely, procedurally perfectly, and always conservatively. I have three back up plans for every eventuality and firmly believe there is nothing I could face in flight that is beyond my capability. That’s not only due to experience, but mostly because of years of relentless, ongoing advanced training not only in full-motion simulators, but through hours of classroom instruction, systems training, and recurrent exams. I have every confidence in the copilots I fly with who share the exact same goals, procedures, and training. In the cockpit, we’re unanimous about one thing: the safe, efficient, and smooth operation of our flight.

Pasta entree

So, knowing all this, what else can you do to ease the stress of a flight? First, keep the above facts in mind, reviewing as needed leading up to your flight and even on board. Second, keep track of the elapsed time. Your airline app will tell you how much flight time to expect, as will the captain in his PA and also, the flight attendants will normally tell you the planned flight time in their PA. Whatever the total flight time is, divide it in half. Now, keep track of the first half, which will elapse much faster for you than the total time. Just that half, count it down. Upon reaching halftime, relax and rejoice: from there you will count down an ever-shrinking time period much shorter (and growing ever shorter) than you have already endured quite successfully.

Concentrate on your breathing, keeping it steady and calm. Reading matter, a video, music: dive in, focus on that. Claim a little “me” time and catch up on reading or viewing that you never seem to have time for otherwise.

bigg ass twitter

Keep an eye on your halftime benchmark, noting your steady progress. Bear in mind the fluid aspect of air and anticipate some waves in this most vast sea we’re sailing through. Be confident that your extensive flight team, including the crew on board as well as our airline technical, operational, and dispatch staff constantly monitoring and interacting with us in flight, plus the air traffic control network of pros handling our route passage. We’ve all been doing this for a long time and as our record shows, we’re darn good at it.

I’ve used the countdown technique at the dentist office (my “nervous flyer” experience) as well as when running several 26.2 marathons. It works!

There may never be a time when a nervous flyer actually enjoys a flight, but there’s no reason a flight can’t be tolerated with minimal stress with a little forethought and perhaps, an equal amount of distraction with entertainment or conversation. Here’s a summary for you to review as needed:


• Unfamiliarity is often at the core of preflight anxiety. Review the contents of this book and this section, and give yourself credit for your successful progress through the various steps required for a plane flight.

• Your aircraft is a tough, versatile, well-designed engineering marvel that has been refined over years of improvements.

• Constant monitoring of the aircraft’s vital systems in flight allows reliability and safety that makes air travel the safest travel option.

• Weather systems are a reality of life, but we have advanced technology on-board as well as on the ground keeping us well ahead of weather challenges and well clear of danger.

• The atmosphere is a fluid and behaves much like a large body of water, with the same, normal characteristics such as currents, flow, eddies, wakes, and the occasional bump.

• Your pilots are highly experienced and dedicated solely to the safe, professional operation of your flight.

• Use the countdown system of flight time to your advantage, watching your time aloft grow ever shorter.

Cover Airline Book 1Other chapters include buying a ticket, getting the best deal and the right seat, check-in and security shortcuts, on-board perspective, aircrew insider perspective, damage control and much, much more. Read this book, then travel like a pro!

The perfect gift for someone about to travel, for those reluctant to fly–and for those eager to fly and wanting to have a stress-free, excellent air travel experience.

Order your copy from

Just click this link.

Airline Amazon screenshot

Air Travel Illustrated: The Holiday Flights.

Posted in air travel, airline, airline cartoon, airline cartoon book, airline delays, airline industry, airline passenger, airline pilot, airline pilot blog, airliner, airlines, airport, airport security, cartoon, fear of flying, flight attendant, flight crew, flight delays, jet, passenger, pilot, travel with tags , , , , , , , , , , , , on November 26, 2014 by Chris Manno

Some times words won’t do, or maybe illustrations can do better. Regardless, if you’re flying somewhere for the holiday, this is your life enroute. If you’re home already, here’s what you’re missing.

First, my best advice either way:

holiday 20001

With that in mind, make sensible reservations based upon experience, rather than an idealized hope:

seats apart0001

Flights are packed, so plan your inflight strategy:

safe word0001

Getting a last minute seat can be nearly impossible due to holiday load factors, unless you’re willing to compromise:


Keep in mind that you’ll have to handle your own baggage:


Prepare mentally for the challenges of airport security:

privacy tsa0001


Please board only when your sedative is called:

board prozac 10001

Ignore the pompous guys impressing each other in First Class:

class warfare

Or maybe share your admiration for them as you pass by:



Realize that children are on-board, so you’ll need to deal with them:

biz traveller0001

And parents, remember it’s your responsibility to discipline your kids on board:


Pay attention to the flight attendants when they speak to you:

tray table0001

And they may be talking to you even indirectly:


So pay attention:

connecting gate info

And when I turn on the seatbelt sign, it does mean you:


Realize that weather can complicate our flight:

scat vomit

So be prepared.

barf bag

Anticipate the post-holiday letdown:

leftover resentment0001

Enjoy your leftovers properly:

reheat turkey0001

And congratulate yourself for traveling and thereby avoiding a worse fate. Bon voyage!

fly 2 fam0001

More cartoons? Get the book:

cover promo

Get your copy now–just click the button below:


cartoon guy lg

Malaysia Flight 370: What Didn’t Happen.

Posted in airline, airline industry, airline pilot blog, cruise ship, fear of flying, flight crew, jet, Malaysian Air 370, security with tags , , on March 15, 2014 by Chris Manno

Speculation on what happened to Malaysia 370 now runs rampant across the world media, just as it always does after any airline disaster. But as usual, most of what the “informed sources” hypothesize is unfounded or at least, not based on fact. That’s because whether the “experts” popping up on broadcast media want to admit it or not, there are few facts; and for all the wrong reasons in this case, there are fewer than ever.

That in itself is significant and, in my judgment from the perspective of one who makes a living piloting Boeing jets, a major factor largely ignored in the media. Specifically, what didn’t happen to that Boeing 777 holds the key to what did.

First, let’s start with the most obvious clue, which basically is the common denominator in one major risk factor that affected everyone who boarded Malaysia flight 370: the two travelers with stolen passports. No, I’m not even suggesting that they were players in a terrorist plot, although that is possible. Rather, the common denominator risk factor is this: clearly, third world security once again and not surprisingly, failed.

The Interpol database listing those stolen passports would have been cross checked in the United States, Canada, Great Britain, and every country in Europe. Was the database available to Malaysia? To the airport in Kuala Lumpur? Of course it was–but the database was never crosschecked against the flight manifest. That’s the starting point of what didn’t happen, and that trail only gets worse.

Is there a good reason why the Interpol list wasn’t checked? Actually, the more important question, the answer to which bears heavily on the common denominator in play, is this: does any good reason for not checking even exist? Technological deficit? Budget constraint? Manpower? Mismanagement? Incompetence? Is there a “good” reason for this failure, which would imply there is a level of acceptance appropriate for the failure to secure the screening process?

If what the rest of the modern world considers essential–airline and airport security–is simply not maintained in Malaysia, what else is not done there?

“We don’t really know.” Seriously?

That brings me to the jet itself. I’ve had a printer message pop up at 40,000 feet that read, “Please check the vibration level on the right engine–it’s reading high down here.” Down here, in this case, is my airline’s technical operations center that is receiving, monitoring and screening the extensive data stream flowing from my Boeing 737-800, including detailed telemetry from the two CFM-56 high-bypass jet engines.


Malaysia Air says there was no data stream from flight 370, while Rolls Royce, the manufacturer of the engines on that 777 who monitors that data stream says there was. Which raises the larger question of why the two disagree? Why would the airline–and the authorities governing airlines in Malaysia–not have the data, or say that they didn’t? Again, is there even a good reason? Lost data? Technical shortcoming? Incompetence? Insufficient budget or manpower resources?

Which brings worse to worst: untruth. In an incident I witnessed from the left seat, the key piece of cause data that nearly led to hull loss with 150 fatalities (including me) was the radar plot and audio tape of the Mexico City Approach Control’s vectoring. Which, of course, went “missing” in the subsequent investigation.

Which lowers us to the worst of the worst factors at play in Malaysia and Mexico and other third world countries where, as Asiana Airlines proved last summer, a “competent and qualified” cockpit crew could fly a perfectly good 777 into a sea wall. That is, culture.

Asiana crew flies into seawall on landing..

Certainly, the Ethiopia Airlines copilot who recently commandeered his own 767 and nearly ran it out of fuel over Central Europe was, according to Ethiopia Air and their aeronautics regulators, “highly qualified” like the Asiana crew.

“Hijacked”–by the copilot.

In a country like Malaysia where no heads roll when passports are not checked against databases of security risks, stolen documents, and worldwide watch lists, when key flight data may or may not be recorded, monitored or maintained (all that data, by the way, is key to modern jet safety and maintenance), when convention and tradition–essentially culture–mandates that power relationships (and likely, money) transcend the first world strictures of duty, common sense and personal responsibility–what does anyone think could–and did, and will–happen?

The only reason this list of failures–which barely scratches the surfaces of things that didn’t happen, causing the disaster that did–is a surprise to the flying public is because of a twofold consumer bias: price, and marketing. A 777 in the paint job of Malaysia Air looks as impressive as a 777 in United Airlines paint, and they both have a $250 million dollar price tag. But that’s where the similarity ends–technical capability, maintenance standards, government regulatory oversight, budget, manpower and culture run the gamut–and there is a bottom end upon which the airline passenger who goes by appearances gambles everything.

Consider the billion dollar cruise industry, where it’s common to register a half-billion dollar ocean liner in the country with the least competent (read: least costly/interfering) regulatory capability, like Liberia, the Bahamas, or Panama. And when a mega-ship’s engines fail in cruise, or the steering quits, or a fire disables the electrical system, or the incompetent captain runs the ship aground showing off, we get a thousand personal anecdotes, cell phone pics, YouTube videos and talk show interviews from those who survived the incompetence, decrying what didn’t happen that should have prevented what atrocity actually did.

“Experienced,” certified Costa cruise ship captain Francesco Schettino runs ship aground–then abandons the ship and 2,000 passengers.

How does that regulatory, cultural and operating failure play out at 35,000 feet and 500mph? Ask the passengers of Malaysia 370 about the end result–if you can find them. Because in their case, all of the above things that should have protected them did not.

The bigger mystery in the Malaysia 370 disappearance isn’t what happened, or even what failed to happen which caused the loss of 200+ lives. Rather, it’s that people are actually surprised that it did.

. . . a week later: still nothing.

Contact JetHead privately: see “About”


Summer Weather, Flight Delays and YOU.

Posted in air travel, airline, airline delays, airline pilot blog, airport, fear of flying, flight crew, flight delays, passenger, travel, travel tips, weather with tags , , , , , , , , , , , on May 29, 2013 by Chris Manno

fll sunsetYou can see the weather plain as day. But it’s miles away, right? How could that cause flight delays? Or worse, on a day that’s clear at the airport–yet your flight shows a one hour or longer departure day. Why?

Think big–or at least think far: miles translate into minutes in the air, and unlike your car on the freeway, we’re not creeping along under the storm–we have to get through it. At altitude, sure, we can go around weather or sometimes, even over a storm. But there’s the problem on take-off and landing: we are too low to do either.

First, let’s look at departure:

wx radar departure

Sure, the weather is nearly twenty miles away. But in flight time, we’re talking about maybe three minutes. Then what?

Normally, there are at least six eastbound routes available, but as you can see, due to the weather that extends from the north to the south, even twenty miles away, there are only two routes available to go east: straight north, or straight south. And guess what? They’re the same ones that will have to be used for the inbound aircraft–and they’re already in the air, many for over three hours inbound from the east coast, or up to nine hours from Europe. Guess who rightfully has priority on the clear routes?

Here’s more bad news for your outbound schedule:

lowgn4All of the departures–like the one pictured in above, and depicted on the navigation display with the radar image above–have very specific instructions for headings, altitudes and even speeds. But with the weather blanketing the area, no jet can comply with these very orderly instructions, so instead, air traffic controllers have to issue all headings and altitudes individually to each aircraft, checking to be sure that weather doesn’t interfere.

So the Air Traffic Control system must space jets by ten, sometimes ever twenty miles in trail to allow for the individual handling required, which means that instead of the usual interval of thirty seconds to a minute between launches, now takeoff will have to be 2-3 minutes in between.  You’re number ten for take-off? Count on at least 30 minutes, maybe more–especially if the weather arrives over the field while you wait.


So, rather than have a traffic jam at the end of the runway waiting to take off, ATC issues all aircraft an “EDCT” (Expect Departure Clearance Time), or “edict,” as the acronym is typically mangled by crews, or even “wheels up time” in more common usage. This can usually mean an Air Traffic Control imposed delay on your pushback from the gate of forty-five minutes to an hour or more.

That presents another problem: while a delayed flight is held on the gate, the next aircraft scheduled for that gate will be delayed as well, either in the deplaning of passengers or the boarding of its next segment. At a major hub for any airline, there aren’t enough extra gates to make up for flights that must be held on their departure gates. If you arrive at the terminal and notice about double the normal amount of passengers milling about–that’s why: their outbound jet is waiting while a delayed flight sits on the gate, waiting for its EDCT time to roll around.

That’s what happens on the ground–here’s what happens in flight–which actually contributes to the confusion and delays on the ground.

wx radar arrivalSee the racetrack pattern near “CAPTI?” That’s where we’re going to be holding, hoping the weather clears within our allotted holding fuel, which is about 45 minutes. The airport is under the blob of storms at the convergence of all the lines.

The jet we’re flying is being ardently awaited at DFW by 160 passengers who plan to fly on it to LAX after we deplane our Dulles passengers at DFW. But, we’re now on our way–diverting–to New Orleans because DFW is still closed and won’t open for at least an hour.

Add to that the fact that my copilot and I started our flight day at 12:35pm. We leave New Orleans at 11pm, but have to fly all the way to Abilene before we can turn back to the east around the scythe of thunderstorms bisecting Texas. What’s normally a one hour and ten minute flight turns into two and a half hours, pushing my first officer to a 14 hour flight duty day, landing at 2:15am.

Not sure what happened to all the LAX-bound folks, whether they got a crew to fly the leg or not, or what happened to the connecting passengers on our flight arriving after 2am.

All I know is that this promises to once again be another season of crowded skies, summer storms, bone-achingly long flight days and above all, a challenge to everyone’s fortitude and patience. Now that you know the “what and why” of the weather story–maybe you could explain it to the guy seated next to you, wondering why everything is so messed up because of a little old storm?

ramp DFW

%d bloggers like this: