Archive for the jet flight Category

Brick by brick to the sky.

Posted in air travel, airline pilot, airline pilot blog, flight, jet flight with tags , , , , , , on October 22, 2014 by Chris Manno


He’d started out as a brick hod carrier, Frag had, working his way up from the grunt labor of the laden, creaking wooden hod to the old-world artisan status of a bricklayer and along the way, reducing himself in name only to the fractional monosyllable “Frag” as he did. That seemed enough for him, or so he’d said. Because what he did was larger and more weighty than anything he was ever called.

You, college boy,” he fairly barked in a gravelly smoker’s bass that typically ended in a hawk and a spit. “You ain’t nothing now ‘cept dog-hauling a hod for journeyman Frag.” He liked to refer to himself in the third person, and me as College Boy, reluctant hourly summer help, just some kind of cardboard thin cutout of a not-Frag, not perilously balancing a hod on the fourth floor, open girder structure as he had in an old-world, long lost tradesman reality.

And he was right–about that but even more: soaring buildings took shape on blue-lined white paper derived from computer-assisted draftsmen in thin ties and nine-to-five safety free of an unbalanced hod laden with the real heft of mortar and sand, the reality of what they designed, brought to life by the wiry tough, nut-hard muscle of Frag. And to a lesser degree, gofer College Boy me. Bound to the ground, all of them, till Frag gave them flight, story by grunting story.

The sweat equity, dirty fingernails payout of the endless hods Frags and lesser College Boys wrestled–you didn’t “carry” a hod, you balanced it–commanded the dreamscape of architecture and sweatless design to life on a gruntscape of muscle and brick placed just so, line to certain line, mortar scrape by deft, artistic bricklay and tap, brick by a thousand bricks, up into the sky.

I can never forget the achy weariness of burning college boy sinew, sun-baked of dry labor days and even after work, crazy beer-fueled joyrides balancing atop, for no sensible reason, Frag’s battleship-sized beater Pontiac as he’d fishtail and rage through a dirt-clodded, unpaved construction site. Why? Because Frag was bigger than all that, larger than anything they could design and he could build, that he orchestrated brick by brick with his callused hands and college boy’s dog-like, tongue-hanging dragging labor. Real work is only what you do with your hands, where your bring paper and promise to life. To flight.

Power control is key to airspeed.

Not so labor-coarse are the hands today resting atop the thrust levers harnessing a straining draft horse team bucking fifty-thousand pounds of jet thrust. Stand hard on the brakes and haw the team to roaring life, needing to know, to feel it, read it, personally. Sure, there are a thousand lines of computer code flowing through electric sinews monitoring the ungodly torrent of fire and fuel, metal and power slung under wide swept sleek wings howling against the brakes but no matter: journeyman Frag knows it ain’t right till it feels right, looks true as a plumb line to a tradesman’s eye for “right,” for launching more than a towering design, yet no more than that in the play out of someone else’s grand plan in the sky.

To my right College Boy, jet edition, eyes me warily as I hold it all in my tight-handed, set jaw grasp, squint-eyeing what we’ve built to be sure, to know it’s true. Hah. Stand on the roof, college boy, and hang on. We’re going to fly, make it soar, like never before or again.

Live it, fly it with me: cvr w white borderThese 25 short essays in the best tradition of JetHead put YOU in the cockpit and at the controls of the jet.

Some you’ve read here, many have yet to appear and the last essay, unpublished and several years in the writing,  I consider to be my best writing effort yet.

Own a piece of JetHead, from Amazon Books and also on Kindle.

amazon order button

Air Travel: 3 Simple Ways to Make Your Summer Flights Easy

Posted in airline, airline cartoon, airline industry, airline passenger, airline pilot, airline pilot blog, airliner, airlines, airport, flight, flight attendant, flight crew, jet flight with tags , , , , , , , , , , , , on June 9, 2014 by Chris Manno


Summer time air travel can be stressful, but there are practical and simple things you can do to make your trip easier. Here are my top 3 simple ways to make your summer air travel as efficient and low stress as possible.

1. Information: install the smart phone apps for the travel services that apply to your trip (airline, hotel, rental car) and take a few minutes before your trip to set them up with “push” notifications so you will automatically be notified of gate changes, delays and even rebooking. If you’re notified of a delay by the airline, having a hotel, rental car or resort app installed will put you in touch with those important services quickly and easily. Your pharmacy’s smart phone prescription app can speed you through the refill process in a distant city, or transfer prescriptions in many cases.


aa app 1

Many airline apps let you rebook instantly, avoiding long waits in a customer service line, and can outline your options quickly without you having to navigate a website. Best of all, you can beat the rush when re-booking is necessary. On some airlines–American Airlines is one–you can use the airline’s app and website in flight through the on-board WIFI for free.

On taxi in, when you’re cleared to use your cell phone, you will be notified–if you authorized “push” notifications–of your next gate accurately if you’re connecting, or your baggage claim if your travel is complete. The gate agents pull that info 10-15 minutes before your gate arrival, and we print it out in flight 30-40 minutes prior to landing. But your “push” notifications will be more timely and accurate than the other two sources.


You can delete any travel apps you don’t need later, but while you’re on the move, there’s no quicker or more accurate way to get the answers you need to your immediate travel needs. Install the apps, know how they work, and use them to stay ahead of the crowd–especially in case of cancellations, delays or gate changes.

2. Survival gear. First, count on none of your basic needs being met: food, water, shelter. Provide all three yourself. First, food: if you can’t buy something in the terminal to take along–and often you can’t–better have whatever compact, long shelf life calories source you can pack: power bars, granola bars–whatever you prefer that will stave off hunger.

Ditto for water: you “can” get water on board, but the question is when, and sometimes, how–are you in the back and they’re starting the beverage service from the front? Or vice versa? Or is it too turbulent to safely move about the cabin for passengers or crew? Just have a liter of bottled water handy per person, then don’t worry about it.

Finally, “shelter:” dress for the trip, not the destination. That resort-wear will not keep you warm in a chilly cabin, particularly on long flights. And here’s a crew secret: your flight attendants are active, working, and blanketed in layers of polyester. Who do you think calls us to ask for changes in the cabin temp? If they’re melting under the uniform layers, you’re going to wish you weren’t in shorts and a tank top, because we’re more likely to hear “cool it down” than “warm it up” from our working crew in back.

cabin freeze

3. Consolidate: all vitals and valuables in one hand-carried, locked bag. Medication, documents and here’s the big one–valuables, like your watch, wallet and any jewelry MUST go into this one locked bag BEFORE security. Why would you ever–and I see this all the time–put your wallet, watch, cell phone and other valuables into an open container on an unmonitored conveyer belt? Why not consolidate them all and then after you’ve successfully passed through security screening, retrieve your items from your locked bag?


And locked is the key: if you’re pulled aside for additional screening, do you want all of your valuables laying out in the open, outside your reach and often, out of your sight? Even if that one locked bag requires extra screening, the lock ensures it will only be searched in your presence.

The final part of “consolidate” applies to your personal belongings: do NOT disperse your items all over your seat area. It’s a sure way to leave an item on a plane, a fact that is borne out by the number of passports, wallets, personal entertainment devices, tablets, keys and phones that turn up on overnight cleaning of aircraft. If you leave valuables, much less valuable documents like a passport, in the seat back pocket or anywhere else, you’ll likely never see them again. And speaking of “seeing” them, the normal climbs, descents, banking and on landing, braking will cause whatever loose items you may leave or drop on the floor to end up rows away. Even if you check your immediate area before deplaning, some items might have vanished. So don’t scatter your belongings about! Return items to your hand carried bag immediately after use or when not in use.

Face it–air travel is stressful as it is, but a lot of stress can be alleviated by these three steps. Information is king when you’re departing, trying to connect, or are changing plans on the fly due to delays or cancellations. Get the apps, set them up, and use them. Stay hydrated, fed, and warm to ease the physical stress. And finally, move smart: consolidate your valuables and do not let your personal items become strewn about your seating or waiting areas on board or in the terminal. Inflight forces will help them slide away, or if you leave them inadvertently, chances are slim that you’ll ever recover those items.

Follow these simple steps–and have a good flight and a great vacation.


Impress your flight crew with your airline insider knowledge–

Get your copy of the JetHead Cartoon collection:

cover lined

72 pages of original, insider cartoons!

To order, click here.



Sent from my iPad mini

The Epistle oF light.

Posted in air travel, airline, airline pilot, airline pilot blog, jet flight, night with tags , , , , , , , , , , on July 30, 2013 by Chris Manno


The Orion Nebula contains a very young open cluster, known as the Trapezium due to the asterism of its primary four stars. Two of these can be resolved into their component binary systems on nights with good seeing, giving a total of six stars.

The basic framework for the moving target that is flight comprises an architecture of anchors and change: weights dictate speeds which prescribe duration and altitude. The wooden stake in the ground, sure as the tenuous GPS alignment reluctantly tolerating the gusty wind bucking the 40 foot tall rudder assembly, will be ancient history as soon as we move. But to know where we’re going, we have to know where we started from.

The stars of the Trapezium, along with many other stars, are still in their early years. The Trapezium may be a component of the much larger Orion Nebula Cluster, an association of about 2,000 stars within a diameter of 20 light years. Two million years ago this cluster may have been the home of the runaway stars AE Aurigae, 53 Arietis, and Mu Columbae, which are currently moving away from the nebula at velocities greater than 100 km/s.

737 night

And drawn as moths to the flame, pairs and singles, Noah’s children march aboard, halfway to somewhere, their presence now a light reflected forward, as meaningless in the here-and-now as the two-by-two was in the pouring rain, boarding the ark: it’s all about the retelling later.

A nebula is an interstellar cloud in outer space that is made up of dust, hydrogen and helium gas, and plasma. It is formed when portions of the interstellar medium collapse and clump together due to the gravitational attraction of the particles that comprise them. The gravitational forces between particles is directly proportional to the their masses, remember?

“Now” is a moving target, mortgaged by “then,” which in the preflight cockpit is more about “there:” the air nautical miles divided by pounds of fuel burned per each. The symphony of electrons conjures an opus of transformation: if everyone plays his part, there will be a smooth harmony of fire, speed and distance, underscored by dollars transferred and spent, buoying steel and fuel, blood and bone, suspended across the night sky like the fiery tail of a comet from here to there.

When a star burns through the last of its fuel, it may find itself collapsing. For smaller stars, up to about three times the sun’s mass, the new core will be a neutron star or a white dwarf. But when a larger star collapses, it continues to fall in on itself to create a stellar black hole.

It’s always the “after” from which meaning is made. For the ark, that’s arrival. For the pilots, that’s enroute, the record inscribed across the night sky, 500 degree exhaust gas boiling away at -55 C ice crystaline air, backlit by the moonlight as a spider web across the star-flung dome. Keep the fires burning.

Black holes formed by the collapse of individual stars are (relatively) small, but incredibly dense. Such an object packs three times or more the mass of the sun into a city-sized range. This leads to a crazy amount of gravitational force pulling on objects around it. Black holes consume the dust and gas from the galaxy around them, growing in size.

And for those left behind, like those yet ahead, the unseen passage is one of either anticipation or regret, of bidding welcome or goodbye, of time spent or lost. You can’t not feel the diminishing weight of both, lighter the farther and higher you go. No hands hold you, just wings and lift, time and tide, fire and ice in balance. Passage.

Orion’s light is either a promise given or a wish fulfilled, depending on where you see it and when. At light speed, the trapezoid assigned to the mythology, the murky nebulae burning within, left home in the time of Alexander the Great, overtaking you at 41,000 feet a couple millennium later. Either way it’s a lie–a now from then, seen light years away; then as if now.

al great

Just like your flight: you’ve crammed a million footsteps into the counting of minutes rather than lifetimes, footless, seven miles high, an ark sailing on a rolling tide of time and place, borne of fire, trust, hope, and light.

For those in the back, the metal ark is but conveyance. For you, more an arc inscribed across the night, more than passage but less than permanence. Like the silent, obedient constellation, the gas blue light won’t matter until it’s examined in retrospect. You live in the passage, grant the flight its own universal time and space, its million shards of where and when and ultimately, why. But it’s never about “there,” for you. Only leaving there, and flight across darkness: night, the shadow of life, then home, the nexus oF light.

cockpit night

How do YOU land at San Francisco International Airport?

Posted in air travel, airline, airline pilot, airline pilot blog, airliner, airport, flight crew, jet flight with tags , , , , on July 9, 2013 by Chris Manno

sfo 2

Here’s how you land at San Francisco International. First, the view over your left shoulder as you cruise “downwind” for your arrival into San Francisco International. You’ve arrived from the Pacific side of the airport, so you can plan (they’ve probably advised you already) on landing on runway 28L, which is the runway you’re paralleling on downwind. Yes, there are 2 runways that you are paralleling, but the logical one for you is the one on the left. Here’s what the airport diagram looks like, with an arrow pointing to 28 Left:

sfo 10-9a

Let’s talk about all of the runways at San Francisco International (SFO), because their are simultaneous operations on all four runways, so your landing runway is not operating independently or simply–nor are you as a pilot landing at SFO. Those two runways intersecting your landing runway will be launching aircraft out of SFO even as you are landing: yes, they’re crossing your runway–and you theirs–simultaneously. That means the SFO tower controllers are managing a complex ballet of speeds, timing and clearances. They’re doing a precise, excellent job, but a lot will depend on you: you must fly the assigned airspeed exactly in order for all of the moving parts in this synchronic mix of flying metal to mesh smoothly.

sfo 1a

But wait, there’s more: runways 28 left and Right are too close together. Built built on a man-made pier, the pair are crammed closely together, closer than the standard, required spacing for parallel runways. Why does that matter? Well, because on final, aircraft approaching the runways at the same time will fly closer than the normal lateral separation required by the FAA standard:

28 parallel

Not taken with a telephoto lens. Rather, that’s a jet landing on 28L, taken from the cabin of one landing on 28R.  Lateral separation is minimal–by virtue of a waiver of the standard separation that the FAA granted to SFO–so there are more restrictions on you, the pilot. First, you must not overtake the other aircraft. That’s because the trailing aircraft is charged with maintaining visual separation, because the leading aircraft can’t really see the trailing aircraft. If you overtake him, there will be a period where neither can maintain separation visually. So airspeed control must be exact, usually assigned by tower–to ensure separation from another part of the moving mechanism: aircraft are taking off on the intersecting runways, shooting the gap between your landing aircraft (and the parallel partner above) and the ones who landed before you.

Here’s the instrument approach for your landing runway–and there’s a complication today with that, too.


Today, the radio glidepath, or “Glideslope” (GS) is NOTAMed (NOTice to AirMen) out–meaning you will not have that descent guidance available on your display, so, you’ll be expected then to manually crosscheck the “step down” altitudes (7000, 6000, 5000, 4000, 3100, 1800, and 213) against the distance marked on this chart. All while flying the specified speed assigned by tower, which you must integrate with the maximum speeds allowed by the flap configuration required for the approach and landing.

bug eye cockpit

Sounding too complicated to manage? Well, it’s not. In fact, it’s routine: very often, you’ll encounter intersecting runway operations (Chicago O’Hare comes to mind, and those controllers do a fantastic job of choreographing that ballet); many airports have reduced, FAA-waived runway separation (hello, Minneapolis), and at any given time, airports around the nation report various instrument landing system components temporarily out of service .

The glideslope being out wasn’t a surprise, either: you were advised by NOTAM (see above) before you even took off on this leg of the condition of the equipment and on your approach briefing (probably done within the last hour) you reviewed the requirements, procedures and complication with the other pilot(s) in the cockpit prior to starting the approach.  And if you’re savvy,  just in case, you briefed the approach to the parallel runway as well. That’s because at any point, due to traffic load or other factors, SFO tower can swap you to the other runway–just like that but again, that’s routine in the airline biz. Expect it, pre-brief it, deal with it.

fms crz

Which means reprogramming the correct approach points in the Flight Management System (FMS) on the fly (pun intended) and verify each point, then set up the correct intercept to a forward waypoint in the FMS. All the while, don’t forget our friend out there–it’s your responsibility to stay clear–

28 parallel

Fly the speed assigned to the waypoint assigned, maintain the altitude minimums according to the above chart by comparison with your distance from the field and . . . configure for landing, while observing the flap speed limitations of your jet.

Here’s where you get to do your own balancing act within the swirling gearbox of approaches, landings, takeoffs and climbouts: if tower assigns you to fly a speed of 200 to “DUYET,” (see approach diagram above), that means you are limited to flaps 15 (have to be below 190 for more). But DUYET is at 1,800 feet and your airline has a “stabilized approach” policy below 1,000 feet: must be in final landing configuration and stabilized airspeed (neither increasing or decreasing) with a stable power setting (neither spooling up or down) from 1,000 feet to touchdown.

Power control is key to airspeed.

Power control is key to airspeed.

From 1,800 at DUYET to 1,000 feet, at a standard descent rate of around 800-900 feet per minute, you’ll have about 60 seconds, maybe less depending on tailwinds, to decelerate about 50 knots, then re-stablize the speed and power, and extend the flaps from 15 to 25 to 30 or 40 for landing. If not, mandatory go-around–meaning, initiate a climb following the “Missed Approach” instructions on the chart above. That’s also included in your approach briefing, remember which one–left or right–that you’re doing because remember, there are aircraft launching as well, mixing into the airspace. Then either repeat the approach (also very routine) or divert.

Stabilized? Good–now the only thing YOU must do is monitor descent rate, speed and alignment. That’s why a stabilized approach is vital: being set in descent rate and airspeed and power setting frees you to simply fly to a safe landing. After an approach that you now know is anything but simple. Happy landings.

737 landing crop

Motion Lotion: What’s the Commotion?

Posted in air travel, airline, airline pilot, airline pilot blog, airliner, flight crew, flight delays, jet, jet flight, passenger, pilot, travel with tags , , , , , , , , , , , , on June 27, 2013 by Chris Manno

“The only time you can have too much fuel is when you’re on fire.” –Anonymous Pilot

Those are words to live by, in the flying business–but jet fuel is expensive. In fact, it’s just about the largest expense in the operation of the airline, which is why it makes sense to use fuel as sparingly but sensibly as possible. But as a passenger, what’s it to you?

Well, for starters, this:

tstm day

Do we go around it? Above it? Through? You won’t like the last option, but fuel is the double-edged sword in this fight: more means we’re heavier, which limits our climb. Plus, going around the weather will burn more fuel, limiting our options at our destination:

fms crz

We’re at 36,000 feet now, which is just about the optimum altitude. “Optimum” is a moving target: as you burn off fuel enroute, the jet gets lighter and the wing can handle a higher altitude, which means the engines can operate at a lower thrust setting, thus saving fuel. We’re within 200 feet of the max if we climb to 38,000 feet to top the weather. We can wait till the “max” readout shows “380,” or really, from experience, we know that in the time it takes to request and receive the clearance, plus what we’ll burn in the climb, we’ll be at the correct weight. But, there’s always a catch.


The airspeed tape on the left shows us a very narrow operating range at the top end of our altitude capability. That is, your range of acceptable airspeed is from about 212 to about 245. The “chain” above that shows the area of high speed buffet, meaning parts of the aircraft, above that speed, will begin to go supersonic. More importantly, though, in my mind, is Mach tuck: swept-wing jets tend toward a pitch down near the high speed limit, and guess what a pitch down does: your high speed becomes even higher. In a jet, particularly a passenger jet, if you don’t recover aggressively and immediately, you will not be able to stop what will become a dive.

On the bottom of the tape is the yellow line we call “the hook,” which is the slow speed stall. If you go below that speed, your airfoil will stall, and you will fall.

PFD coffin corner

So, at 38,000 feet, we have very little margin between the high and low speed buffet, requiring extreme vigilance on our part: turbulence, mountain wave action, or a drastic updraft of any kind can push us beyond either speed limit. Which is also part of the balancing act the captain must perform:

pfd coffin corner 2

I insert a slower Mach number in order to cruise more toward the middle of the range between the high and low speed limits. That, too, though, will affect our arrival time, won’t it? But that’s a balance I feel can be maintained, knowing that we’ve picked up some direct routing already. I’d rather sacrifice some time (and really, fuel) to gain a better pad between any adverse effects (mountain wave, thunderstorm up drafts, windshear, clear air turbulence) that could push us into either boundary.

And, I’ve already checked: the winds at the higher altitude are more favorable. To be even more accurate, I’ve requested a data-linked update to our flight management system, updating the projected winds the computer is using to calculate the times, distances and fuel burn it displays because what we data-linked into the system on preflight hours ago may not still be accurate:

fms crz wind update

The photo makes it hard to see, but the new, uplinked wind speeds are highlighted, all I need to do is push the “EXC” (execute) button and the entire nav calculation will be updated in a matter of seconds.

Climbing early has taken us out of more headwind earlier, so I believe the ETA will be largely unaffected. This hunch is borne out as we progress in our flight:

flt prog 1

We cross Pocatello, Idaho (PIH) six minutes ahead of schedule and up 700 pounds on fuel. If, however, the higher altitude winds were less favorable, we’d end up with the same result by going around the weather (more miles at regular cruise Mach)  as by climbing above the weather (less miles at a slower speed). The latter option is better, fuel-wise, as you can see from the fuel log above. But we’ll do whatever is safest and most optimum first, and worry about timing  later. Plus, if we don’t have what I consider a comfortable high speed-low speed margin at the higher altitude–we’re not climbing, we’ll just have to fly the additional miles (and minutes) around the storm.

It’s not just air miles between us and Seattle–it’s a constant balancing act of time, fuel, altitude and route. It all goes on steadily, quietly but relentlessly in the cockpit, but we all share the payoff in the end.


Flight Crew Talk: The Beatings Will Continue.

Posted in airline cartoon, airline pilot blog, flight, flight attendant, flight crew, jet flight, travel with tags , , , , , , , , , on May 15, 2013 by Chris Manno

What we have here . . . is a failure to communicate.

You wouldn’t think it would be so hard for crewmembers to communicate in flight–we have the technology; interphone, PA system, headsets and handsets–even our oxygen masks on the flight deck are wired for sound.

Nonetheless, once the cockpit door is closed, communication dies a slow, miserable death and as captain–it’s YOU taking the Cool Hand Luke beating from the Road Boss.

You don’t like it, I don’t like it–but that’s the way he wants it . . . so he gets it.

Let’s start with what’s usually the first salvo, fired right as we climb through ten thousand feet. That’s the magic end of “sterile cockpit,” which is the time period when flight attendants know non-essential communications with the pilots is prohibited because it’s a phase of flight requiring our concentration in the cockpit, and distractions are not welcome. I have answered the crew interphone when we’ve received a call below 10,000 feet with the admonishment, “We’d better be on fire if you’re calling me now.”

But above ten thousand, here it comes: “Can you turn down the air?”

Sigh. What does that even mean? More cold air? More hot air? Higher temperature? Turn down? So begins twenty questions: “What is it you want?” Sadly, though, the whole thing is our own fault or, honestly, usually the F/O’s fault.

ac tempThat’s because F/Os just CANNOT LEAVE THE TEMP CONTROLS ALONE. This is especially true of those with lingering brain damage from the MD-80, which essentially had a caveman vintage air conditioning system that DID require a lot of tweaking. On take-off, at full power, it could make snow in the back if you didn’t nudge the temp control valve off of the full-cold stop.

Not so with the Boeing–but F/Os HAVE to mess with it anyway–even though if the temp was comfortable on the ground, the Boeing will maintain that in flight.Nope–F/Os have to mess with it, have to do something, even though automatically, it’s fine left alone.

And that brings on the second failure to communicate. Inevitably, the F/O has to argue, usually tossing out, “Well, the duct temp says 75 degrees.”

phone cockpit

Unfortunately, the crew interphone system is a party line, and the flight attendants are listening. Sigh. They don’t give a damn about the duct temp–neither do I–they just know if they’re comfortable.  But that’s the pilot pigheadedness: we already know everything.

To reiterate, as I bump all three compartment temps down, just leave it alone, and give them whatever the hell they want. What do you care? You’re not back there.

Plus, use your head: this is a senior turnaround flight, with senior flight attendants swathed in layers of polyester, hauling carts and traipsing up and down the aisle. You think they want heat? You think I do? Sitting in the gazebo, direct sunlight–I constantly reach over and call for more cool air. You’re cold? Too bad–next flight, bring a sweater.


Now, let’s visit the cruise portion of our non-communication. The primary voice passengers hear is the PA, which announces information pertinent to our flight, like arrival time and weather. That’s key information for travelers and crew alike. But, there’s a catch: flight attendants can’t hear the PA.

For flight attendants, the PA is like a dog whistle: we can all hear it, average dogs that we are, but flight attendants are oblivious. You could have just said over the PA “we’ll be landing in one hour” and within minutes, the interphone chime will go off and the question will be, “When are we landing?” And not just once, because not only do flight attendants not hear the PA, they don’t talk to each other either. So you’ll get the same call two, maybe three times.


And never mind that you’ve given them a hard copy of the flight time before takeoff, and that they’ve typed that information into the touch screen at their station controlling the passenger information and entertainment system . . .


. . . and that touchscreen, if they look at it, will tell them how much longer we have left in the flight. But, that would mean they’d have to look at their watch, then do the math. Especially when we’re landing in a different time zone–it’s easier to just call up front and ask me. Right?

Well, maybe not me. My answer is usually relative: “About ten minutes early.” Which means: look at your watch. This is your flight–know your own schedule.

Or, look at the gee-whiz panel at your station, counting down the minutes. Or, do the unthinkable: ask one of your colleagues in the back? Nah. Whether it’s the temperature or the time, rather than ask each other, just call up front. All of you–not one call, but four, because you can’t hear the dog whistle or talk to each other. Even had a fifth flight attendant, just riding the aft jumpseat home 130 feet behind me, ask me to “cool off the back.” Seriously?

Okay, it’s a given: we work together, fly together, even all talk–sometimes at once–to each other. We just don’t communicate very well. So, my new policy is this: any time the crew interphone chimes, I look to the F/O and say, “It’s for you.” He’s the one screwing up the temp anyway.

And at least I’m happy, and that’s a start.

sunset contrail

Jet Wake Turbulence: Distance Ain’t Enough.

Posted in air travel, airline, airline pilot blog, airliner, jet, jet flight, passenger, pilot, travel, weather with tags , , , , , , , , , , , on January 19, 2013 by Chris Manno

Sneaking up behind me, are you? Here’s an infrared view you might need to heed: not the hotspots, but powerful the twin horizontal corkscrews of air current swirling off the wingtips of my jet. They’re wily, dangerous, and not to be trusted.

According to the Flight Safety Foundation, the vortices from a jet can have an internal rotation of up to 300 feet per second and often extend between 2 and 10 nautical miles behind a jet aircraft. The twin tornadoes–that’s literally what they are, horizontal but spinning powerfully–sink at a variable rate, between 300 and 500 feet per minute to an altitude  between 500 and 900 feet below the aircraft’s flight path and can persist for three or more minutes depending on the meteorological conditions.

That’s the problem, but hardly the full situation. Add to this hazard the closely constrained flight path of jet traffic in terminal areas. For instance:

SFO Q bridge

Approaching from the east, you’ll have a traffic stream from the west as well converging on the same runway complex. Not unusual as far as airports go–except that San Francisco International has less than the standard distance separating the two parallel runways. The FAA has waived the normal lateral separation, but you’d better keep that in mind nonetheless because that also means less than normal separation from the vortices of the aircraft next to you. Remember the outward spreading motion of those two tornadoes?

747 BAThis guy could be your dance partner all the way down final–and if he’s next to you, you aren’t entitled to the separation you’d get if he were ahead of you. Mostly, ATC will “advise” you to “use caution” for the heavy on the west runway, workload and time permitting–but they don’t have to.

And time and workload may not permit any advanced warning, and adverse weather can shroud the entire scene anyway:

SEA 16CLook at the inset on the bottom right corner: Seattle (one of my favorite destination cities!) has three parallel runways grouped together, and you won’t be told which of the three runways you’re landing on until you turn base to final about three minutes from touchdown. Would it make sense or even be possible to keep you informed of the heavies on all three inbound tracks? Add to the mix the typically obscured Seattle visibility, plus the added workload of programming and validating the FMS  sytem approach waypoints at the last second demanded by the late runway assignment and is there a possibility of situational awareness overload, on final approach: was that a heavy in front of us? Or on the outboard runway?


Bring that back to San Francisco, where the standard runway separation is “waived,” like in MSP and many other cities. Now you’ve got a “buddy” laterally whose wake turbulence is drifting outwardly–just as yours is–and just because he’s not a “heavy” doesn’t mean he can’t roll you.

The ICAO worldwide “recommendation” for separation between a “heavy” and a “medium” following aircraft  (say, a 747 and a 737) is 5 NM (9.3 KM); between two heavies, 4 NM (7.4 KM). But the wild card not even mentioned in the separation rules is configuration and maneuvering: simply put, a “dirty” jet (flaps, gear) creates a nastier wake than a “clean” jet, and maneuvering distorts weight. That is, if I level off my 160,000 pound 737 with an addition one-half “G” force, I add to the effective weight another 40 tons of effect. And we’re a medium jet–imagine a heavy maneuvering dirty adding to his effective weight and wake.

That’s the science, now here comes the art. You know the reported winds at the field, but that’s a red herring: your encounter with wake turbulence won’t happen on the field. You need to be aware of the winds on approach, at your altitude. If the lateral wind at your altitude is blowing into the other jet’s wake, here’s what can happen: if the drift equals the outward spread momentum of the wake–and you have to figure the “dirty,” “maneuvering” wild cards mentioned above–the effect will either be to move the wake away more rapidly, or freeze it in place till it dissipates. Which is it?

You can’t see wake turbulence. You can’t be sure where it is, or know it’s strength based solely on the aircraft designation. And sooner or later, you’ll find yourself in it despite your best, most diligent precautions. What are you going to do, captain?

dusk b

For a true jethead like me, the first answer is always speed–but not so fast (pun intended): you’re configured with restrictive maximum flap speeds. If you’re in a final configuration with 40 degrees of flaps, you’re limited to 162 knots max. But the second instinct is valid: power.

throttle bugeye

But power alone is only part of the answer: what you’re not doing is going down. Why not? Because we know the vorticies are sinking. If we remain level or climb, we’ll escape the effects. What are they?

The Flight Safety Foundation survey of hundreds of wake turbulence encounters reveals uncommanded roll in trailing aircraft of up to 45 degrees at altitudes below 1,000 above the ground. One thousand feet is another magic number at my airline: stabilized approach  (on speed, on altitude, power set) is mandatory from 1,000 feet to touchdown. On glidepath–not above or below; not accelerating or decelerating, power set to flown speed and stable. And certainly wings level.

Which brings up the next problem of two major headaches you’ll instantly own. First, the right amount of counter-aileron, even if applied prudently, in many jets will bring up the wing spoilers to drop the low wing rapidly, inducing adverse drag, requiring more power.

Second, the option of climbing or even flying level is constrained by the published missed approach: protected airspace may be below you if you are above the missed approach altitude. And laterally, not only is there often parallel traffic, there’s also dangerous terrain you must always monitor and stay clear of:


If you encounter wake effects in a level portion of the approach segment, prior to the aircraft ahead descending, at least you know his vortices will descend eventually below you and in this case, you normally feel the “burble” which now cues you: if the winds are keeping his wake aligned with your flight path, on glidepath you’re likely to fly into the tornadoes again when you’re slow and configured with speed-restricting flaps. Now look at the “mileage separation:” still think distance alone is enough? Still committing to the glidepath?

All of that doesn’t even consider the added, inevitable spoiler in every approach: weather. There’s more than terrain and aircraft for you to avoid in a very constrained airspace.


There’s really only one good answer: up. And “up” may be a s simple as “no more down,” meaning a stopped descent or a slight climb to exit the effects. In any case, if you’re below 1,000 feet you’re no longer “stable” per the mandatory requirements. If you’re above 1,000 feet, you’ve just been cued that the mileage interval, given the meteorological conditions, nonetheless has left you vulnerable to the adverse effects of wake turbulence–and you’re not going to proceed.

Which means, in the immortal words of my old friend the Chief Pilot at my airline addressing my 1991 class of Captain’s “Charm School” (officially, “Captain’s Duties & Responsibilities”) as we sat rapt: you’re going to “get the hell out of town.” Amen.


Back in the cabin? Expect the usual complaints about the delay for the second approach, plus a regular dose of exaggerated “there I was” tales about their wake turbulence encounter. So, don’t tell them–if you’ve done your avoidance and even escape properly, they’ll never know you even had a problem, which is the ultimate goal anyway: detecting and avoiding the problem in the first place.

The end result is, what they don’t know won’t hurt them, because you won’t let it. And that’s kind of why you get the privilege of flying the jet in the first place, isn’t it?



Get every new post delivered to your Inbox.

Join 5,630 other followers

%d bloggers like this: